mirror of
https://github.com/embassy-rs/embassy.git
synced 2024-11-25 16:23:10 +00:00
82 lines
2.9 KiB
Rust
82 lines
2.9 KiB
Rust
#![no_std]
|
|
#![no_main]
|
|
#![feature(type_alias_impl_trait)]
|
|
|
|
use core::cmp::Ordering;
|
|
|
|
use defmt::info;
|
|
use embassy_executor::Spawner;
|
|
use embassy_nrf::pdm::{self, Config, Frequency, OperationMode, Pdm, Ratio, SamplerState};
|
|
use embassy_nrf::{bind_interrupts, peripherals};
|
|
use fixed::types::I7F1;
|
|
use microfft::real::rfft_1024;
|
|
use num_integer::Roots;
|
|
use {defmt_rtt as _, panic_probe as _};
|
|
|
|
// Demonstrates both continuous sampling and scanning multiple channels driven by a PPI linked timer
|
|
|
|
bind_interrupts!(struct Irqs {
|
|
PDM => pdm::InterruptHandler<peripherals::PDM>;
|
|
});
|
|
|
|
#[embassy_executor::main]
|
|
async fn main(_p: Spawner) {
|
|
let mut p = embassy_nrf::init(Default::default());
|
|
let mut config = Config::default();
|
|
// Pins are correct for the onboard microphone on the Feather nRF52840 Sense.
|
|
config.frequency = Frequency::_1280K; // 16 kHz sample rate
|
|
config.ratio = Ratio::RATIO80;
|
|
config.operation_mode = OperationMode::Mono;
|
|
config.gain_left = I7F1::from_bits(5); // 2.5 dB
|
|
let mut pdm = Pdm::new(p.PDM, Irqs, &mut p.P0_00, &mut p.P0_01, config);
|
|
|
|
let mut bufs = [[0; 1024]; 2];
|
|
|
|
pdm.run_task_sampler(&mut bufs, move |buf| {
|
|
// NOTE: It is important that the time spent within this callback
|
|
// does not exceed the time taken to acquire the 1500 samples we
|
|
// have in this example, which would be 10us + 2us per
|
|
// sample * 1500 = 18ms. You need to measure the time taken here
|
|
// and set the sample buffer size accordingly. Exceeding this
|
|
// time can lead to the peripheral re-writing the other buffer.
|
|
let mean = (buf.iter().map(|v| i32::from(*v)).sum::<i32>() / buf.len() as i32) as i16;
|
|
let (peak_freq_index, peak_mag) = fft_peak_freq(&buf);
|
|
let peak_freq = peak_freq_index * 16000 / buf.len();
|
|
info!(
|
|
"{} samples, min {=i16}, max {=i16}, mean {=i16}, AC RMS {=i16}, peak {} @ {} Hz",
|
|
buf.len(),
|
|
buf.iter().min().unwrap(),
|
|
buf.iter().max().unwrap(),
|
|
mean,
|
|
(buf.iter()
|
|
.map(|v| i32::from(*v - mean).pow(2))
|
|
.fold(0i32, |a, b| a.saturating_add(b))
|
|
/ buf.len() as i32)
|
|
.sqrt() as i16,
|
|
peak_mag,
|
|
peak_freq,
|
|
);
|
|
SamplerState::Sampled
|
|
})
|
|
.await
|
|
.unwrap();
|
|
}
|
|
|
|
fn fft_peak_freq(input: &[i16; 1024]) -> (usize, u32) {
|
|
let mut f = [0f32; 1024];
|
|
for i in 0..input.len() {
|
|
f[i] = (input[i] as f32) / 32768.0;
|
|
}
|
|
// N.B. rfft_1024 does the FFT in-place so result is actually also a reference to f.
|
|
let result = rfft_1024(&mut f);
|
|
result[0].im = 0.0;
|
|
|
|
result
|
|
.iter()
|
|
.map(|c| c.norm_sqr())
|
|
.enumerate()
|
|
.max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Equal))
|
|
.map(|(i, v)| (i, ((v * 32768.0) as u32).sqrt()))
|
|
.unwrap()
|
|
}
|