use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet}; use std::fmt::Write as _; use std::io::Write; use std::path::{Path, PathBuf}; use std::process::Command; use std::{env, fs}; use proc_macro2::{Ident, TokenStream}; use quote::{format_ident, quote}; use stm32_metapac::metadata::ir::BitOffset; use stm32_metapac::metadata::{ MemoryRegionKind, PeripheralRccKernelClock, PeripheralRccRegister, PeripheralRegisters, StopMode, ALL_CHIPS, ALL_PERIPHERAL_VERSIONS, METADATA, }; #[path = "./build_common.rs"] mod common; fn main() { let mut cfgs = common::CfgSet::new(); common::set_target_cfgs(&mut cfgs); let chip_name = match env::vars() .map(|(a, _)| a) .filter(|x| x.starts_with("CARGO_FEATURE_STM32")) .get_one() { Ok(x) => x, Err(GetOneError::None) => panic!("No stm32xx Cargo feature enabled"), Err(GetOneError::Multiple) => panic!("Multiple stm32xx Cargo features enabled"), } .strip_prefix("CARGO_FEATURE_") .unwrap() .to_ascii_lowercase(); eprintln!("chip: {chip_name}"); for p in METADATA.peripherals { if let Some(r) = &p.registers { cfgs.enable(r.kind); cfgs.enable(format!("{}_{}", r.kind, r.version)); } } for &(kind, versions) in ALL_PERIPHERAL_VERSIONS.iter() { cfgs.declare(kind); for &version in versions.iter() { cfgs.declare(format!("{}_{}", kind, version)); } } // ======== // Generate singletons let mut singletons: Vec = Vec::new(); for p in METADATA.peripherals { if let Some(r) = &p.registers { if r.kind == "adccommon" || r.kind == "sai" || r.kind == "ucpd" { // TODO: should we emit this for all peripherals? if so, we will need a list of all // possible peripherals across all chips, so that we can declare the configs // (replacing the hard-coded list of `peri_*` cfgs below) cfgs.enable(format!("peri_{}", p.name.to_ascii_lowercase())); } match r.kind { // Generate singletons per pin, not per port "gpio" => { let port_letter = p.name.strip_prefix("GPIO").unwrap(); for pin_num in 0..16 { singletons.push(format!("P{}{}", port_letter, pin_num)); } } // No singleton for these, the HAL handles them specially. "exti" => {} // We *shouldn't* have singletons for these, but the HAL currently requires // singletons, for using with RccPeripheral to enable/disable clocks to them. "rcc" => { for pin in p.pins { if pin.signal.starts_with("MCO") { let name = pin.signal.replace('_', "").to_string(); if !singletons.contains(&name) { cfgs.enable(name.to_ascii_lowercase()); singletons.push(name); } } } singletons.push(p.name.to_string()); } //"dbgmcu" => {} //"syscfg" => {} //"dma" => {} //"bdma" => {} //"dmamux" => {} // For other peripherals, one singleton per peri _ => singletons.push(p.name.to_string()), } } } cfgs.declare_all(&[ "peri_adc1_common", "peri_adc3_common", "peri_adc12_common", "peri_adc34_common", "peri_sai1", "peri_sai2", "peri_sai3", "peri_sai4", "peri_ucpd1", "peri_ucpd2", ]); cfgs.declare_all(&["mco", "mco1", "mco2"]); // One singleton per EXTI line for pin_num in 0..16 { singletons.push(format!("EXTI{}", pin_num)); } // One singleton per DMA channel for c in METADATA.dma_channels { singletons.push(c.name.to_string()); } let mut pin_set = std::collections::HashSet::new(); for p in METADATA.peripherals { for pin in p.pins { pin_set.insert(pin.pin); } } struct SplitFeature { feature_name: String, pin_name_with_c: String, #[cfg(feature = "_split-pins-enabled")] pin_name_without_c: String, } // Extra analog switch pins available on most H7 chips let split_features: Vec = vec![ #[cfg(feature = "split-pa0")] SplitFeature { feature_name: "split-pa0".to_string(), pin_name_with_c: "PA0_C".to_string(), pin_name_without_c: "PA0".to_string(), }, #[cfg(feature = "split-pa1")] SplitFeature { feature_name: "split-pa1".to_string(), pin_name_with_c: "PA1_C".to_string(), pin_name_without_c: "PA1".to_string(), }, #[cfg(feature = "split-pc2")] SplitFeature { feature_name: "split-pc2".to_string(), pin_name_with_c: "PC2_C".to_string(), pin_name_without_c: "PC2".to_string(), }, #[cfg(feature = "split-pc3")] SplitFeature { feature_name: "split-pc3".to_string(), pin_name_with_c: "PC3_C".to_string(), pin_name_without_c: "PC3".to_string(), }, ]; for split_feature in &split_features { if pin_set.contains(split_feature.pin_name_with_c.as_str()) { singletons.push(split_feature.pin_name_with_c.clone()); } else { panic!( "'{}' feature invalid for this chip! No pin '{}' found.\n Found pins: {:#?}", split_feature.feature_name, split_feature.pin_name_with_c, pin_set ) } } // ======== // Handle time-driver-XXXX features. let time_driver = match env::vars() .map(|(a, _)| a) .filter(|x| x.starts_with("CARGO_FEATURE_TIME_DRIVER_")) .get_one() { Ok(x) => Some( x.strip_prefix("CARGO_FEATURE_TIME_DRIVER_") .unwrap() .to_ascii_lowercase(), ), Err(GetOneError::None) => None, Err(GetOneError::Multiple) => panic!("Multiple stm32xx Cargo features enabled"), }; let time_driver_singleton = match time_driver.as_ref().map(|x| x.as_ref()) { None => "", Some("tim1") => "TIM1", Some("tim2") => "TIM2", Some("tim3") => "TIM3", Some("tim4") => "TIM4", Some("tim5") => "TIM5", Some("tim8") => "TIM8", Some("tim9") => "TIM9", Some("tim12") => "TIM12", Some("tim15") => "TIM15", Some("tim20") => "TIM20", Some("tim21") => "TIM21", Some("tim22") => "TIM22", Some("tim23") => "TIM23", Some("tim24") => "TIM24", Some("any") => { // Order of TIM candidators: // 1. 2CH -> 2CH_CMP -> GP16 -> GP32 -> ADV // 2. In same catagory: larger TIM number first [ "TIM22", "TIM21", "TIM12", "TIM9", // 2CH "TIM15", // 2CH_CMP "TIM19", "TIM4", "TIM3", // GP16 "TIM24", "TIM23", "TIM5", "TIM2", // GP32 "TIM20", "TIM8", "TIM1", //ADV ] .iter() .find(|tim| singletons.contains(&tim.to_string())).expect("time-driver-any requested, but the chip doesn't have TIM1, TIM2, TIM3, TIM4, TIM5, TIM8, TIM9, TIM12, TIM15, TIM20, TIM21, TIM22, TIM23 or TIM24.") } _ => panic!("unknown time_driver {:?}", time_driver), }; if !time_driver_singleton.is_empty() { cfgs.enable(format!("time_driver_{}", time_driver_singleton.to_lowercase())); } for tim in [ "tim1", "tim2", "tim3", "tim4", "tim5", "tim8", "tim9", "tim12", "tim15", "tim20", "tim21", "tim22", "tim23", "tim24", ] { cfgs.declare(format!("time_driver_{}", tim)); } // ======== // Write singletons let mut g = TokenStream::new(); let singleton_tokens: Vec<_> = singletons.iter().map(|s| format_ident!("{}", s)).collect(); g.extend(quote! { embassy_hal_internal::peripherals_definition!(#(#singleton_tokens),*); }); let singleton_tokens: Vec<_> = singletons .iter() .filter(|s| *s != &time_driver_singleton.to_string()) .map(|s| format_ident!("{}", s)) .collect(); g.extend(quote! { embassy_hal_internal::peripherals_struct!(#(#singleton_tokens),*); }); // ======== // Generate interrupt declarations let mut irqs = Vec::new(); for irq in METADATA.interrupts { irqs.push(format_ident!("{}", irq.name)); } g.extend(quote! { embassy_hal_internal::interrupt_mod!( #( #irqs, )* ); }); // ======== // Generate FLASH regions let mut flash_regions = TokenStream::new(); let flash_memory_regions: Vec<_> = METADATA .memory .iter() .filter(|x| x.kind == MemoryRegionKind::Flash && x.settings.is_some()) .collect(); for region in flash_memory_regions.iter() { let region_name = format_ident!("{}", get_flash_region_name(region.name)); let bank_variant = format_ident!( "{}", if region.name.starts_with("BANK_1") { "Bank1" } else if region.name.starts_with("BANK_2") { "Bank2" } else { continue; } ); let base = region.address; let size = region.size; let settings = region.settings.as_ref().unwrap(); let erase_size = settings.erase_size; let write_size = settings.write_size; let erase_value = settings.erase_value; flash_regions.extend(quote! { pub const #region_name: crate::flash::FlashRegion = crate::flash::FlashRegion { bank: crate::flash::FlashBank::#bank_variant, base: #base, size: #size, erase_size: #erase_size, write_size: #write_size, erase_value: #erase_value, _ensure_internal: (), }; }); let region_type = format_ident!("{}", get_flash_region_type_name(region.name)); flash_regions.extend(quote! { #[cfg(flash)] pub struct #region_type<'d, MODE = crate::flash::Async>(pub &'static crate::flash::FlashRegion, pub(crate) embassy_hal_internal::PeripheralRef<'d, crate::peripherals::FLASH>, pub(crate) core::marker::PhantomData); }); } let (fields, (inits, region_names)): (Vec, (Vec, Vec)) = flash_memory_regions .iter() .map(|f| { let region_name = get_flash_region_name(f.name); let field_name = format_ident!("{}", region_name.to_lowercase()); let field_type = format_ident!("{}", get_flash_region_type_name(f.name)); let field = quote! { pub #field_name: #field_type<'d, MODE> }; let region_name = format_ident!("{}", region_name); let init = quote! { #field_name: #field_type(&#region_name, unsafe { p.clone_unchecked()}, core::marker::PhantomData) }; (field, (init, region_name)) }) .unzip(); let regions_len = flash_memory_regions.len(); flash_regions.extend(quote! { #[cfg(flash)] pub struct FlashLayout<'d, MODE = crate::flash::Async> { #(#fields),*, _mode: core::marker::PhantomData, } #[cfg(flash)] impl<'d, MODE> FlashLayout<'d, MODE> { pub(crate) fn new(p: embassy_hal_internal::PeripheralRef<'d, crate::peripherals::FLASH>) -> Self { Self { #(#inits),*, _mode: core::marker::PhantomData, } } } pub const FLASH_REGIONS: [&crate::flash::FlashRegion; #regions_len] = [ #(&#region_names),* ]; }); let max_erase_size = flash_memory_regions .iter() .map(|region| region.settings.as_ref().unwrap().erase_size) .max() .unwrap(); g.extend(quote! { pub const MAX_ERASE_SIZE: usize = #max_erase_size as usize; }); g.extend(quote! { pub mod flash_regions { #flash_regions } }); // ======== // Extract the rcc registers let rcc_registers = METADATA .peripherals .iter() .filter_map(|p| p.registers.as_ref()) .find(|r| r.kind == "rcc") .unwrap(); let rcc_block = rcc_registers.ir.blocks.iter().find(|b| b.name == "Rcc").unwrap(); // ======== // Generate RccPeripheral impls // count how many times each xxENR field is used, to enable refcounting if used more than once. let mut rcc_field_count: HashMap<_, usize> = HashMap::new(); for p in METADATA.peripherals { if let Some(rcc) = &p.rcc { let en = rcc.enable.as_ref().unwrap(); *rcc_field_count.entry((en.register, en.field)).or_insert(0) += 1; } } struct ClockGen<'a> { rcc_registers: &'a PeripheralRegisters, chained_muxes: HashMap<&'a str, &'a PeripheralRccRegister>, clock_names: BTreeSet, muxes: BTreeSet<(Ident, Ident, Ident)>, } let mut clock_gen = ClockGen { rcc_registers, chained_muxes: HashMap::new(), clock_names: BTreeSet::new(), muxes: BTreeSet::new(), }; if chip_name.starts_with("stm32h5") { clock_gen.chained_muxes.insert( "PER", &PeripheralRccRegister { register: "CCIPR5", field: "PERSEL", }, ); } if chip_name.starts_with("stm32h7r") || chip_name.starts_with("stm32h7s") { clock_gen.chained_muxes.insert( "PER", &PeripheralRccRegister { register: "AHBPERCKSELR", field: "PERSEL", }, ); } else if chip_name.starts_with("stm32h7") { clock_gen.chained_muxes.insert( "PER", &PeripheralRccRegister { register: "D1CCIPR", field: "PERSEL", }, ); } if chip_name.starts_with("stm32u5") { clock_gen.chained_muxes.insert( "ICLK", &PeripheralRccRegister { register: "CCIPR1", field: "ICLKSEL", }, ); } if chip_name.starts_with("stm32wb") && !chip_name.starts_with("stm32wba") { clock_gen.chained_muxes.insert( "CLK48", &PeripheralRccRegister { register: "CCIPR", field: "CLK48SEL", }, ); } if chip_name.starts_with("stm32f7") { clock_gen.chained_muxes.insert( "CLK48", &PeripheralRccRegister { register: "DCKCFGR2", field: "CLK48SEL", }, ); } if chip_name.starts_with("stm32f4") && !chip_name.starts_with("stm32f410") { clock_gen.chained_muxes.insert( "CLK48", &PeripheralRccRegister { register: "DCKCFGR", field: "CLK48SEL", }, ); } impl<'a> ClockGen<'a> { fn gen_clock(&mut self, peripheral: &str, name: &str) -> TokenStream { let clock_name = format_ident!("{}", name.to_ascii_lowercase()); self.clock_names.insert(name.to_ascii_lowercase()); quote!(unsafe { unwrap!( crate::rcc::get_freqs().#clock_name.to_hertz(), "peripheral '{}' is configured to use the '{}' clock, which is not running. \ Either enable it in 'config.rcc' or change 'config.rcc.mux' to use another clock", #peripheral, #name ) }) } fn gen_mux(&mut self, peripheral: &str, mux: &PeripheralRccRegister) -> TokenStream { let ir = &self.rcc_registers.ir; let fieldset_name = mux.register.to_ascii_lowercase(); let fieldset = ir .fieldsets .iter() .find(|i| i.name.eq_ignore_ascii_case(&fieldset_name)) .unwrap(); let field_name = mux.field.to_ascii_lowercase(); let field = fieldset.fields.iter().find(|i| i.name == field_name).unwrap(); let enum_name = field.enumm.unwrap(); let enumm = ir.enums.iter().find(|i| i.name == enum_name).unwrap(); let fieldset_name = format_ident!("{}", fieldset_name); let field_name = format_ident!("{}", field_name); let enum_name = format_ident!("{}", enum_name); self.muxes .insert((fieldset_name.clone(), field_name.clone(), enum_name.clone())); let mut match_arms = TokenStream::new(); for v in enumm.variants.iter().filter(|v| v.name != "DISABLE") { let variant_name = format_ident!("{}", v.name); let expr = if let Some(mux) = self.chained_muxes.get(&v.name) { self.gen_mux(peripheral, mux) } else { self.gen_clock(peripheral, v.name) }; match_arms.extend(quote! { crate::pac::rcc::vals::#enum_name::#variant_name => #expr, }); } quote! { match crate::pac::RCC.#fieldset_name().read().#field_name() { #match_arms #[allow(unreachable_patterns)] _ => unreachable!(), } } } } let mut refcount_idxs = HashMap::new(); for p in METADATA.peripherals { if !singletons.contains(&p.name.to_string()) { continue; } if let Some(rcc) = &p.rcc { let rst_reg = rcc.reset.as_ref(); let en_reg = rcc.enable.as_ref().unwrap(); let pname = format_ident!("{}", p.name); let get_offset_and_bit = |reg: &PeripheralRccRegister| -> TokenStream { let reg_offset = rcc_block .items .iter() .find(|i| i.name.eq_ignore_ascii_case(reg.register)) .unwrap() .byte_offset; let reg_offset: u8 = (reg_offset / 4).try_into().unwrap(); let bit_offset = &rcc_registers .ir .fieldsets .iter() .find(|i| i.name.eq_ignore_ascii_case(reg.register)) .unwrap() .fields .iter() .find(|i| i.name.eq_ignore_ascii_case(reg.field)) .unwrap() .bit_offset; let BitOffset::Regular(bit_offset) = bit_offset else { panic!("cursed bit offset") }; let bit_offset: u8 = bit_offset.offset.try_into().unwrap(); quote! { (#reg_offset, #bit_offset) } }; let reset_offset_and_bit = match rst_reg { Some(rst_reg) => { let reset_offset_and_bit = get_offset_and_bit(rst_reg); quote! { Some(#reset_offset_and_bit) } } None => quote! { None }, }; let enable_offset_and_bit = get_offset_and_bit(en_reg); let needs_refcount = *rcc_field_count.get(&(en_reg.register, en_reg.field)).unwrap() > 1; let refcount_idx = if needs_refcount { let next_refcount_idx = refcount_idxs.len() as u8; let refcount_idx = *refcount_idxs .entry((en_reg.register, en_reg.field)) .or_insert(next_refcount_idx); quote! { Some(#refcount_idx) } } else { quote! { None } }; let clock_frequency = match &rcc.kernel_clock { PeripheralRccKernelClock::Mux(mux) => clock_gen.gen_mux(p.name, mux), PeripheralRccKernelClock::Clock(clock) => clock_gen.gen_clock(p.name, clock), }; // A refcount leak can result if the same field is shared by peripherals with different stop modes // This condition should be checked in stm32-data let stop_mode = match rcc.stop_mode { StopMode::Standby => quote! { crate::rcc::StopMode::Standby }, StopMode::Stop2 => quote! { crate::rcc::StopMode::Stop2 }, StopMode::Stop1 => quote! { crate::rcc::StopMode::Stop1 }, }; g.extend(quote! { impl crate::rcc::SealedRccPeripheral for peripherals::#pname { fn frequency() -> crate::time::Hertz { #clock_frequency } const RCC_INFO: crate::rcc::RccInfo = unsafe { crate::rcc::RccInfo::new( #reset_offset_and_bit, #enable_offset_and_bit, #refcount_idx, #[cfg(feature = "low-power")] #stop_mode, ) }; } impl crate::rcc::RccPeripheral for peripherals::#pname {} }); } } g.extend({ let refcounts_len = refcount_idxs.len(); let refcount_zeros: TokenStream = refcount_idxs.iter().map(|_| quote! { 0u8, }).collect(); quote! { pub(crate) static mut REFCOUNTS: [u8; #refcounts_len] = [#refcount_zeros]; } }); let struct_fields: Vec<_> = clock_gen .muxes .iter() .map(|(_fieldset, fieldname, enum_name)| { quote! { pub #fieldname: #enum_name } }) .collect(); let mut inits = TokenStream::new(); for fieldset in clock_gen .muxes .iter() .map(|(f, _, _)| f) .collect::>() .into_iter() { let setters: Vec<_> = clock_gen .muxes .iter() .filter(|(f, _, _)| f == fieldset) .map(|(_, fieldname, _)| { let setter = format_ident!("set_{}", fieldname); quote! { w.#setter(self.#fieldname); } }) .collect(); inits.extend(quote! { crate::pac::RCC.#fieldset().modify(|w| { #(#setters)* }); }) } let enum_names: BTreeSet<_> = clock_gen.muxes.iter().map(|(_, _, enum_name)| enum_name).collect(); g.extend(quote! { pub mod mux { #(pub use crate::pac::rcc::vals::#enum_names as #enum_names; )* #[derive(Clone, Copy)] #[non_exhaustive] pub struct ClockMux { #( #struct_fields, )* } impl ClockMux { pub(crate) const fn default() -> Self { // safety: zero value is valid for all PAC enums. unsafe { ::core::mem::zeroed() } } } impl Default for ClockMux { fn default() -> Self { Self::default() } } impl ClockMux { pub(crate) fn init(&self) { #inits } } } }); // Generate RCC clock_gen.clock_names.insert("sys".to_string()); clock_gen.clock_names.insert("rtc".to_string()); let clock_idents: Vec<_> = clock_gen.clock_names.iter().map(|n| format_ident!("{}", n)).collect(); g.extend(quote! { #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[repr(C)] pub struct Clocks { #( pub #clock_idents: crate::time::MaybeHertz, )* } }); let clocks_macro = quote!( macro_rules! set_clocks { ($($(#[$m:meta])* $k:ident: $v:expr,)*) => { { #[allow(unused)] struct Temp { $($(#[$m])* $k: Option,)* } let all = Temp { $($(#[$m])* $k: $v,)* }; crate::rcc::set_freqs(crate::rcc::Clocks { #( #clock_idents: all.#clock_idents.into(), )* }); } }; } ); // ======== // Generate fns to enable GPIO, DMA in RCC for kind in ["dma", "bdma", "dmamux", "gpdma", "gpio"] { let mut gg = TokenStream::new(); for p in METADATA.peripherals { if p.registers.is_some() && p.registers.as_ref().unwrap().kind == kind { if let Some(rcc) = &p.rcc { let en = rcc.enable.as_ref().unwrap(); let en_reg = format_ident!("{}", en.register.to_ascii_lowercase()); let set_en_field = format_ident!("set_{}", en.field.to_ascii_lowercase()); gg.extend(quote! { crate::pac::RCC.#en_reg().modify(|w| w.#set_en_field(true)); }) } } } let fname = format_ident!("init_{}", kind); g.extend(quote! { pub unsafe fn #fname(){ #gg } }) } // ======== // Generate pin_trait_impl! #[rustfmt::skip] let signals: HashMap<_, _> = [ // (kind, signal) => trait (("ucpd", "CC1"), quote!(crate::ucpd::Cc1Pin)), (("ucpd", "CC2"), quote!(crate::ucpd::Cc2Pin)), (("usart", "TX"), quote!(crate::usart::TxPin)), (("usart", "RX"), quote!(crate::usart::RxPin)), (("usart", "CTS"), quote!(crate::usart::CtsPin)), (("usart", "RTS"), quote!(crate::usart::RtsPin)), (("usart", "CK"), quote!(crate::usart::CkPin)), (("usart", "DE"), quote!(crate::usart::DePin)), (("lpuart", "TX"), quote!(crate::usart::TxPin)), (("lpuart", "RX"), quote!(crate::usart::RxPin)), (("lpuart", "CTS"), quote!(crate::usart::CtsPin)), (("lpuart", "RTS"), quote!(crate::usart::RtsPin)), (("lpuart", "CK"), quote!(crate::usart::CkPin)), (("lpuart", "DE"), quote!(crate::usart::DePin)), (("sai", "SCK_A"), quote!(crate::sai::SckPin)), (("sai", "SCK_B"), quote!(crate::sai::SckPin)), (("sai", "FS_A"), quote!(crate::sai::FsPin)), (("sai", "FS_B"), quote!(crate::sai::FsPin)), (("sai", "SD_A"), quote!(crate::sai::SdPin)), (("sai", "SD_B"), quote!(crate::sai::SdPin)), (("sai", "MCLK_A"), quote!(crate::sai::MclkPin)), (("sai", "MCLK_B"), quote!(crate::sai::MclkPin)), (("sai", "WS"), quote!(crate::sai::WsPin)), (("spi", "SCK"), quote!(crate::spi::SckPin)), (("spi", "MOSI"), quote!(crate::spi::MosiPin)), (("spi", "MISO"), quote!(crate::spi::MisoPin)), (("spi", "NSS"), quote!(crate::spi::CsPin)), (("spi", "I2S_MCK"), quote!(crate::spi::MckPin)), (("spi", "I2S_CK"), quote!(crate::spi::CkPin)), (("spi", "I2S_WS"), quote!(crate::spi::WsPin)), (("i2c", "SDA"), quote!(crate::i2c::SdaPin)), (("i2c", "SCL"), quote!(crate::i2c::SclPin)), (("rcc", "MCO_1"), quote!(crate::rcc::McoPin)), (("rcc", "MCO_2"), quote!(crate::rcc::McoPin)), (("rcc", "MCO"), quote!(crate::rcc::McoPin)), (("dcmi", "D0"), quote!(crate::dcmi::D0Pin)), (("dcmi", "D1"), quote!(crate::dcmi::D1Pin)), (("dcmi", "D2"), quote!(crate::dcmi::D2Pin)), (("dcmi", "D3"), quote!(crate::dcmi::D3Pin)), (("dcmi", "D4"), quote!(crate::dcmi::D4Pin)), (("dcmi", "D5"), quote!(crate::dcmi::D5Pin)), (("dcmi", "D6"), quote!(crate::dcmi::D6Pin)), (("dcmi", "D7"), quote!(crate::dcmi::D7Pin)), (("dcmi", "D8"), quote!(crate::dcmi::D8Pin)), (("dcmi", "D9"), quote!(crate::dcmi::D9Pin)), (("dcmi", "D10"), quote!(crate::dcmi::D10Pin)), (("dcmi", "D11"), quote!(crate::dcmi::D11Pin)), (("dcmi", "D12"), quote!(crate::dcmi::D12Pin)), (("dcmi", "D13"), quote!(crate::dcmi::D13Pin)), (("dcmi", "HSYNC"), quote!(crate::dcmi::HSyncPin)), (("dcmi", "VSYNC"), quote!(crate::dcmi::VSyncPin)), (("dcmi", "PIXCLK"), quote!(crate::dcmi::PixClkPin)), (("dsihost", "TE"), quote!(crate::dsihost::TePin)), (("ltdc", "CLK"), quote!(crate::ltdc::ClkPin)), (("ltdc", "HSYNC"), quote!(crate::ltdc::HsyncPin)), (("ltdc", "VSYNC"), quote!(crate::ltdc::VsyncPin)), (("ltdc", "DE"), quote!(crate::ltdc::DePin)), (("ltdc", "R0"), quote!(crate::ltdc::R0Pin)), (("ltdc", "R1"), quote!(crate::ltdc::R1Pin)), (("ltdc", "R2"), quote!(crate::ltdc::R2Pin)), (("ltdc", "R3"), quote!(crate::ltdc::R3Pin)), (("ltdc", "R4"), quote!(crate::ltdc::R4Pin)), (("ltdc", "R5"), quote!(crate::ltdc::R5Pin)), (("ltdc", "R6"), quote!(crate::ltdc::R6Pin)), (("ltdc", "R7"), quote!(crate::ltdc::R7Pin)), (("ltdc", "G0"), quote!(crate::ltdc::G0Pin)), (("ltdc", "G1"), quote!(crate::ltdc::G1Pin)), (("ltdc", "G2"), quote!(crate::ltdc::G2Pin)), (("ltdc", "G3"), quote!(crate::ltdc::G3Pin)), (("ltdc", "G4"), quote!(crate::ltdc::G4Pin)), (("ltdc", "G5"), quote!(crate::ltdc::G5Pin)), (("ltdc", "G6"), quote!(crate::ltdc::G6Pin)), (("ltdc", "G7"), quote!(crate::ltdc::G7Pin)), (("ltdc", "B0"), quote!(crate::ltdc::B0Pin)), (("ltdc", "B1"), quote!(crate::ltdc::B1Pin)), (("ltdc", "B2"), quote!(crate::ltdc::B2Pin)), (("ltdc", "B3"), quote!(crate::ltdc::B3Pin)), (("ltdc", "B4"), quote!(crate::ltdc::B4Pin)), (("ltdc", "B5"), quote!(crate::ltdc::B5Pin)), (("ltdc", "B6"), quote!(crate::ltdc::B6Pin)), (("ltdc", "B7"), quote!(crate::ltdc::B7Pin)), (("usb", "DP"), quote!(crate::usb::DpPin)), (("usb", "DM"), quote!(crate::usb::DmPin)), (("otg", "DP"), quote!(crate::usb::DpPin)), (("otg", "DM"), quote!(crate::usb::DmPin)), (("otg", "ULPI_CK"), quote!(crate::usb::UlpiClkPin)), (("otg", "ULPI_DIR"), quote!(crate::usb::UlpiDirPin)), (("otg", "ULPI_NXT"), quote!(crate::usb::UlpiNxtPin)), (("otg", "ULPI_STP"), quote!(crate::usb::UlpiStpPin)), (("otg", "ULPI_D0"), quote!(crate::usb::UlpiD0Pin)), (("otg", "ULPI_D1"), quote!(crate::usb::UlpiD1Pin)), (("otg", "ULPI_D2"), quote!(crate::usb::UlpiD2Pin)), (("otg", "ULPI_D3"), quote!(crate::usb::UlpiD3Pin)), (("otg", "ULPI_D4"), quote!(crate::usb::UlpiD4Pin)), (("otg", "ULPI_D5"), quote!(crate::usb::UlpiD5Pin)), (("otg", "ULPI_D6"), quote!(crate::usb::UlpiD6Pin)), (("otg", "ULPI_D7"), quote!(crate::usb::UlpiD7Pin)), (("can", "TX"), quote!(crate::can::TxPin)), (("can", "RX"), quote!(crate::can::RxPin)), (("eth", "REF_CLK"), quote!(crate::eth::RefClkPin)), (("eth", "RX_CLK"), quote!(crate::eth::RXClkPin)), (("eth", "TX_CLK"), quote!(crate::eth::TXClkPin)), (("eth", "MDIO"), quote!(crate::eth::MDIOPin)), (("eth", "MDC"), quote!(crate::eth::MDCPin)), (("eth", "CRS_DV"), quote!(crate::eth::CRSPin)), (("eth", "RX_DV"), quote!(crate::eth::RXDVPin)), (("eth", "RXD0"), quote!(crate::eth::RXD0Pin)), (("eth", "RXD1"), quote!(crate::eth::RXD1Pin)), (("eth", "RXD2"), quote!(crate::eth::RXD2Pin)), (("eth", "RXD3"), quote!(crate::eth::RXD3Pin)), (("eth", "TXD0"), quote!(crate::eth::TXD0Pin)), (("eth", "TXD1"), quote!(crate::eth::TXD1Pin)), (("eth", "TXD2"), quote!(crate::eth::TXD2Pin)), (("eth", "TXD3"), quote!(crate::eth::TXD3Pin)), (("eth", "TX_EN"), quote!(crate::eth::TXEnPin)), (("fmc", "A0"), quote!(crate::fmc::A0Pin)), (("fmc", "A1"), quote!(crate::fmc::A1Pin)), (("fmc", "A2"), quote!(crate::fmc::A2Pin)), (("fmc", "A3"), quote!(crate::fmc::A3Pin)), (("fmc", "A4"), quote!(crate::fmc::A4Pin)), (("fmc", "A5"), quote!(crate::fmc::A5Pin)), (("fmc", "A6"), quote!(crate::fmc::A6Pin)), (("fmc", "A7"), quote!(crate::fmc::A7Pin)), (("fmc", "A8"), quote!(crate::fmc::A8Pin)), (("fmc", "A9"), quote!(crate::fmc::A9Pin)), (("fmc", "A10"), quote!(crate::fmc::A10Pin)), (("fmc", "A11"), quote!(crate::fmc::A11Pin)), (("fmc", "A12"), quote!(crate::fmc::A12Pin)), (("fmc", "A13"), quote!(crate::fmc::A13Pin)), (("fmc", "A14"), quote!(crate::fmc::A14Pin)), (("fmc", "A15"), quote!(crate::fmc::A15Pin)), (("fmc", "A16"), quote!(crate::fmc::A16Pin)), (("fmc", "A17"), quote!(crate::fmc::A17Pin)), (("fmc", "A18"), quote!(crate::fmc::A18Pin)), (("fmc", "A19"), quote!(crate::fmc::A19Pin)), (("fmc", "A20"), quote!(crate::fmc::A20Pin)), (("fmc", "A21"), quote!(crate::fmc::A21Pin)), (("fmc", "A22"), quote!(crate::fmc::A22Pin)), (("fmc", "A23"), quote!(crate::fmc::A23Pin)), (("fmc", "A24"), quote!(crate::fmc::A24Pin)), (("fmc", "A25"), quote!(crate::fmc::A25Pin)), (("fmc", "D0"), quote!(crate::fmc::D0Pin)), (("fmc", "D1"), quote!(crate::fmc::D1Pin)), (("fmc", "D2"), quote!(crate::fmc::D2Pin)), (("fmc", "D3"), quote!(crate::fmc::D3Pin)), (("fmc", "D4"), quote!(crate::fmc::D4Pin)), (("fmc", "D5"), quote!(crate::fmc::D5Pin)), (("fmc", "D6"), quote!(crate::fmc::D6Pin)), (("fmc", "D7"), quote!(crate::fmc::D7Pin)), (("fmc", "D8"), quote!(crate::fmc::D8Pin)), (("fmc", "D9"), quote!(crate::fmc::D9Pin)), (("fmc", "D10"), quote!(crate::fmc::D10Pin)), (("fmc", "D11"), quote!(crate::fmc::D11Pin)), (("fmc", "D12"), quote!(crate::fmc::D12Pin)), (("fmc", "D13"), quote!(crate::fmc::D13Pin)), (("fmc", "D14"), quote!(crate::fmc::D14Pin)), (("fmc", "D15"), quote!(crate::fmc::D15Pin)), (("fmc", "D16"), quote!(crate::fmc::D16Pin)), (("fmc", "D17"), quote!(crate::fmc::D17Pin)), (("fmc", "D18"), quote!(crate::fmc::D18Pin)), (("fmc", "D19"), quote!(crate::fmc::D19Pin)), (("fmc", "D20"), quote!(crate::fmc::D20Pin)), (("fmc", "D21"), quote!(crate::fmc::D21Pin)), (("fmc", "D22"), quote!(crate::fmc::D22Pin)), (("fmc", "D23"), quote!(crate::fmc::D23Pin)), (("fmc", "D24"), quote!(crate::fmc::D24Pin)), (("fmc", "D25"), quote!(crate::fmc::D25Pin)), (("fmc", "D26"), quote!(crate::fmc::D26Pin)), (("fmc", "D27"), quote!(crate::fmc::D27Pin)), (("fmc", "D28"), quote!(crate::fmc::D28Pin)), (("fmc", "D29"), quote!(crate::fmc::D29Pin)), (("fmc", "D30"), quote!(crate::fmc::D30Pin)), (("fmc", "D31"), quote!(crate::fmc::D31Pin)), (("fmc", "DA0"), quote!(crate::fmc::DA0Pin)), (("fmc", "DA1"), quote!(crate::fmc::DA1Pin)), (("fmc", "DA2"), quote!(crate::fmc::DA2Pin)), (("fmc", "DA3"), quote!(crate::fmc::DA3Pin)), (("fmc", "DA4"), quote!(crate::fmc::DA4Pin)), (("fmc", "DA5"), quote!(crate::fmc::DA5Pin)), (("fmc", "DA6"), quote!(crate::fmc::DA6Pin)), (("fmc", "DA7"), quote!(crate::fmc::DA7Pin)), (("fmc", "DA8"), quote!(crate::fmc::DA8Pin)), (("fmc", "DA9"), quote!(crate::fmc::DA9Pin)), (("fmc", "DA10"), quote!(crate::fmc::DA10Pin)), (("fmc", "DA11"), quote!(crate::fmc::DA11Pin)), (("fmc", "DA12"), quote!(crate::fmc::DA12Pin)), (("fmc", "DA13"), quote!(crate::fmc::DA13Pin)), (("fmc", "DA14"), quote!(crate::fmc::DA14Pin)), (("fmc", "DA15"), quote!(crate::fmc::DA15Pin)), (("fmc", "SDNWE"), quote!(crate::fmc::SDNWEPin)), (("fmc", "SDNCAS"), quote!(crate::fmc::SDNCASPin)), (("fmc", "SDNRAS"), quote!(crate::fmc::SDNRASPin)), (("fmc", "SDNE0"), quote!(crate::fmc::SDNE0Pin)), (("fmc", "SDNE1"), quote!(crate::fmc::SDNE1Pin)), (("fmc", "SDCKE0"), quote!(crate::fmc::SDCKE0Pin)), (("fmc", "SDCKE1"), quote!(crate::fmc::SDCKE1Pin)), (("fmc", "SDCLK"), quote!(crate::fmc::SDCLKPin)), (("fmc", "NBL0"), quote!(crate::fmc::NBL0Pin)), (("fmc", "NBL1"), quote!(crate::fmc::NBL1Pin)), (("fmc", "NBL2"), quote!(crate::fmc::NBL2Pin)), (("fmc", "NBL3"), quote!(crate::fmc::NBL3Pin)), (("fmc", "INT"), quote!(crate::fmc::INTPin)), (("fmc", "NL"), quote!(crate::fmc::NLPin)), (("fmc", "NWAIT"), quote!(crate::fmc::NWaitPin)), (("fmc", "NE1"), quote!(crate::fmc::NE1Pin)), (("fmc", "NE2"), quote!(crate::fmc::NE2Pin)), (("fmc", "NE3"), quote!(crate::fmc::NE3Pin)), (("fmc", "NE4"), quote!(crate::fmc::NE4Pin)), (("fmc", "NCE"), quote!(crate::fmc::NCEPin)), (("fmc", "NOE"), quote!(crate::fmc::NOEPin)), (("fmc", "NWE"), quote!(crate::fmc::NWEPin)), (("fmc", "CLK"), quote!(crate::fmc::ClkPin)), (("fmc", "BA0"), quote!(crate::fmc::BA0Pin)), (("fmc", "BA1"), quote!(crate::fmc::BA1Pin)), (("timer", "CH1"), quote!(crate::timer::Channel1Pin)), (("timer", "CH1N"), quote!(crate::timer::Channel1ComplementaryPin)), (("timer", "CH2"), quote!(crate::timer::Channel2Pin)), (("timer", "CH2N"), quote!(crate::timer::Channel2ComplementaryPin)), (("timer", "CH3"), quote!(crate::timer::Channel3Pin)), (("timer", "CH3N"), quote!(crate::timer::Channel3ComplementaryPin)), (("timer", "CH4"), quote!(crate::timer::Channel4Pin)), (("timer", "CH4N"), quote!(crate::timer::Channel4ComplementaryPin)), (("timer", "ETR"), quote!(crate::timer::ExternalTriggerPin)), (("timer", "BKIN"), quote!(crate::timer::BreakInputPin)), (("timer", "BKIN_COMP1"), quote!(crate::timer::BreakInputComparator1Pin)), (("timer", "BKIN_COMP2"), quote!(crate::timer::BreakInputComparator2Pin)), (("timer", "BKIN2"), quote!(crate::timer::BreakInput2Pin)), (("timer", "BKIN2_COMP1"), quote!(crate::timer::BreakInput2Comparator1Pin)), (("timer", "BKIN2_COMP2"), quote!(crate::timer::BreakInput2Comparator2Pin)), (("hrtim", "CHA1"), quote!(crate::hrtim::ChannelAPin)), (("hrtim", "CHA2"), quote!(crate::hrtim::ChannelAComplementaryPin)), (("hrtim", "CHB1"), quote!(crate::hrtim::ChannelBPin)), (("hrtim", "CHB2"), quote!(crate::hrtim::ChannelBComplementaryPin)), (("hrtim", "CHC1"), quote!(crate::hrtim::ChannelCPin)), (("hrtim", "CHC2"), quote!(crate::hrtim::ChannelCComplementaryPin)), (("hrtim", "CHD1"), quote!(crate::hrtim::ChannelDPin)), (("hrtim", "CHD2"), quote!(crate::hrtim::ChannelDComplementaryPin)), (("hrtim", "CHE1"), quote!(crate::hrtim::ChannelEPin)), (("hrtim", "CHE2"), quote!(crate::hrtim::ChannelEComplementaryPin)), (("hrtim", "CHF1"), quote!(crate::hrtim::ChannelFPin)), (("hrtim", "CHF2"), quote!(crate::hrtim::ChannelFComplementaryPin)), (("lptim", "CH1"), quote!(crate::lptim::Channel1Pin)), (("lptim", "CH2"), quote!(crate::lptim::Channel2Pin)), (("lptim", "OUT"), quote!(crate::lptim::OutputPin)), (("sdmmc", "CK"), quote!(crate::sdmmc::CkPin)), (("sdmmc", "CMD"), quote!(crate::sdmmc::CmdPin)), (("sdmmc", "D0"), quote!(crate::sdmmc::D0Pin)), (("sdmmc", "D1"), quote!(crate::sdmmc::D1Pin)), (("sdmmc", "D2"), quote!(crate::sdmmc::D2Pin)), (("sdmmc", "D3"), quote!(crate::sdmmc::D3Pin)), (("sdmmc", "D4"), quote!(crate::sdmmc::D4Pin)), (("sdmmc", "D5"), quote!(crate::sdmmc::D5Pin)), (("sdmmc", "D6"), quote!(crate::sdmmc::D6Pin)), (("sdmmc", "D6"), quote!(crate::sdmmc::D7Pin)), (("sdmmc", "D8"), quote!(crate::sdmmc::D8Pin)), (("quadspi", "BK1_IO0"), quote!(crate::qspi::BK1D0Pin)), (("quadspi", "BK1_IO1"), quote!(crate::qspi::BK1D1Pin)), (("quadspi", "BK1_IO2"), quote!(crate::qspi::BK1D2Pin)), (("quadspi", "BK1_IO3"), quote!(crate::qspi::BK1D3Pin)), (("quadspi", "BK1_NCS"), quote!(crate::qspi::BK1NSSPin)), (("quadspi", "BK2_IO0"), quote!(crate::qspi::BK2D0Pin)), (("quadspi", "BK2_IO1"), quote!(crate::qspi::BK2D1Pin)), (("quadspi", "BK2_IO2"), quote!(crate::qspi::BK2D2Pin)), (("quadspi", "BK2_IO3"), quote!(crate::qspi::BK2D3Pin)), (("quadspi", "BK2_NCS"), quote!(crate::qspi::BK2NSSPin)), (("quadspi", "CLK"), quote!(crate::qspi::SckPin)), (("octospi", "IO0"), quote!(crate::ospi::D0Pin)), (("octospi", "IO1"), quote!(crate::ospi::D1Pin)), (("octospi", "IO2"), quote!(crate::ospi::D2Pin)), (("octospi", "IO3"), quote!(crate::ospi::D3Pin)), (("octospi", "IO4"), quote!(crate::ospi::D4Pin)), (("octospi", "IO5"), quote!(crate::ospi::D5Pin)), (("octospi", "IO6"), quote!(crate::ospi::D6Pin)), (("octospi", "IO7"), quote!(crate::ospi::D7Pin)), (("octospi", "DQS"), quote!(crate::ospi::DQSPin)), (("octospi", "NCS"), quote!(crate::ospi::NSSPin)), (("octospi", "CLK"), quote!(crate::ospi::SckPin)), (("octospi", "NCLK"), quote!(crate::ospi::NckPin)), (("tsc", "G1_IO1"), quote!(crate::tsc::G1IO1Pin)), (("tsc", "G1_IO2"), quote!(crate::tsc::G1IO2Pin)), (("tsc", "G1_IO3"), quote!(crate::tsc::G1IO3Pin)), (("tsc", "G1_IO4"), quote!(crate::tsc::G1IO4Pin)), (("tsc", "G2_IO1"), quote!(crate::tsc::G2IO1Pin)), (("tsc", "G2_IO2"), quote!(crate::tsc::G2IO2Pin)), (("tsc", "G2_IO3"), quote!(crate::tsc::G2IO3Pin)), (("tsc", "G2_IO4"), quote!(crate::tsc::G2IO4Pin)), (("tsc", "G3_IO1"), quote!(crate::tsc::G3IO1Pin)), (("tsc", "G3_IO2"), quote!(crate::tsc::G3IO2Pin)), (("tsc", "G3_IO3"), quote!(crate::tsc::G3IO3Pin)), (("tsc", "G3_IO4"), quote!(crate::tsc::G3IO4Pin)), (("tsc", "G4_IO1"), quote!(crate::tsc::G4IO1Pin)), (("tsc", "G4_IO2"), quote!(crate::tsc::G4IO2Pin)), (("tsc", "G4_IO3"), quote!(crate::tsc::G4IO3Pin)), (("tsc", "G4_IO4"), quote!(crate::tsc::G4IO4Pin)), (("tsc", "G5_IO1"), quote!(crate::tsc::G5IO1Pin)), (("tsc", "G5_IO2"), quote!(crate::tsc::G5IO2Pin)), (("tsc", "G5_IO3"), quote!(crate::tsc::G5IO3Pin)), (("tsc", "G5_IO4"), quote!(crate::tsc::G5IO4Pin)), (("tsc", "G6_IO1"), quote!(crate::tsc::G6IO1Pin)), (("tsc", "G6_IO2"), quote!(crate::tsc::G6IO2Pin)), (("tsc", "G6_IO3"), quote!(crate::tsc::G6IO3Pin)), (("tsc", "G6_IO4"), quote!(crate::tsc::G6IO4Pin)), (("tsc", "G7_IO1"), quote!(crate::tsc::G7IO1Pin)), (("tsc", "G7_IO2"), quote!(crate::tsc::G7IO2Pin)), (("tsc", "G7_IO3"), quote!(crate::tsc::G7IO3Pin)), (("tsc", "G7_IO4"), quote!(crate::tsc::G7IO4Pin)), (("tsc", "G8_IO1"), quote!(crate::tsc::G8IO1Pin)), (("tsc", "G8_IO2"), quote!(crate::tsc::G8IO2Pin)), (("tsc", "G8_IO3"), quote!(crate::tsc::G8IO3Pin)), (("tsc", "G8_IO4"), quote!(crate::tsc::G8IO4Pin)), ].into(); for p in METADATA.peripherals { if let Some(regs) = &p.registers { for pin in p.pins { let key = (regs.kind, pin.signal); if let Some(tr) = signals.get(&key) { let mut peri = format_ident!("{}", p.name); let pin_name = { // If we encounter a _C pin but the split_feature for this pin is not enabled, skip it if pin.pin.ends_with("_C") && !split_features.iter().any(|x| x.pin_name_with_c == pin.pin) { continue; } format_ident!("{}", pin.pin) }; let af = pin.af.unwrap_or(0); // MCO is special if pin.signal.starts_with("MCO") { peri = format_ident!("{}", pin.signal.replace('_', "")); } g.extend(quote! { pin_trait_impl!(#tr, #peri, #pin_name, #af); }) } // ADC is special if regs.kind == "adc" { if p.rcc.is_none() { continue; } let peri = format_ident!("{}", p.name); let pin_name = { // If we encounter a _C pin but the split_feature for this pin is not enabled, skip it if pin.pin.ends_with("_C") && !split_features.iter().any(|x| x.pin_name_with_c == pin.pin) { continue; } format_ident!("{}", pin.pin) }; // H7 has differential voltage measurements let ch: Option = if pin.signal.starts_with("INP") { Some(pin.signal.strip_prefix("INP").unwrap().parse().unwrap()) } else if pin.signal.starts_with("INN") { // TODO handle in the future when embassy supports differential measurements None } else if pin.signal.starts_with("IN") && pin.signal.ends_with('b') { // we number STM32L1 ADC bank 1 as 0..=31, bank 2 as 32..=63 let signal = pin.signal.strip_prefix("IN").unwrap().strip_suffix('b').unwrap(); Some(32u8 + signal.parse::().unwrap()) } else if pin.signal.starts_with("IN") { Some(pin.signal.strip_prefix("IN").unwrap().parse().unwrap()) } else { None }; if let Some(ch) = ch { g.extend(quote! { impl_adc_pin!( #peri, #pin_name, #ch); }) } } if regs.kind == "opamp" { if pin.signal.starts_with("VP") { // Impl NonInvertingPin for the VP* signals (VP0, VP1, VP2, etc) let peri = format_ident!("{}", p.name); let pin_name = format_ident!("{}", pin.pin); let ch: u8 = pin.signal.strip_prefix("VP").unwrap().parse().unwrap(); g.extend(quote! { impl_opamp_vp_pin!( #peri, #pin_name, #ch); }) } else if pin.signal == "VOUT" { // Impl OutputPin for the VOUT pin let peri = format_ident!("{}", p.name); let pin_name = format_ident!("{}", pin.pin); g.extend(quote! { impl_opamp_vout_pin!( #peri, #pin_name ); }) } } // DAC is special if regs.kind == "dac" { let peri = format_ident!("{}", p.name); let pin_name = format_ident!("{}", pin.pin); let ch: u8 = pin.signal.strip_prefix("OUT").unwrap().parse().unwrap(); g.extend(quote! { impl_dac_pin!( #peri, #pin_name, #ch); }) } } } } // ======== // Generate dma_trait_impl! let signals: HashMap<_, _> = [ // (kind, signal) => trait (("adc", "ADC"), quote!(crate::adc::RxDma)), (("adc", "ADC1"), quote!(crate::adc::RxDma)), (("adc", "ADC2"), quote!(crate::adc::RxDma)), (("adc", "ADC3"), quote!(crate::adc::RxDma)), (("adc", "ADC4"), quote!(crate::adc::RxDma)), (("ucpd", "RX"), quote!(crate::ucpd::RxDma)), (("ucpd", "TX"), quote!(crate::ucpd::TxDma)), (("usart", "RX"), quote!(crate::usart::RxDma)), (("usart", "TX"), quote!(crate::usart::TxDma)), (("lpuart", "RX"), quote!(crate::usart::RxDma)), (("lpuart", "TX"), quote!(crate::usart::TxDma)), (("sai", "A"), quote!(crate::sai::Dma)), (("sai", "B"), quote!(crate::sai::Dma)), (("spi", "RX"), quote!(crate::spi::RxDma)), (("spi", "TX"), quote!(crate::spi::TxDma)), (("i2c", "RX"), quote!(crate::i2c::RxDma)), (("i2c", "TX"), quote!(crate::i2c::TxDma)), (("dcmi", "DCMI"), quote!(crate::dcmi::FrameDma)), (("dcmi", "PSSI"), quote!(crate::dcmi::FrameDma)), // SDMMCv1 uses the same channel for both directions, so just implement for RX (("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)), (("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)), (("octospi", "OCTOSPI1"), quote!(crate::ospi::OctoDma)), (("dac", "CH1"), quote!(crate::dac::DacDma1)), (("dac", "CH2"), quote!(crate::dac::DacDma2)), (("timer", "UP"), quote!(crate::timer::UpDma)), (("hash", "IN"), quote!(crate::hash::Dma)), (("cryp", "IN"), quote!(crate::cryp::DmaIn)), (("cryp", "OUT"), quote!(crate::cryp::DmaOut)), (("timer", "CH1"), quote!(crate::timer::Ch1Dma)), (("timer", "CH2"), quote!(crate::timer::Ch2Dma)), (("timer", "CH3"), quote!(crate::timer::Ch3Dma)), (("timer", "CH4"), quote!(crate::timer::Ch4Dma)), (("cordic", "WRITE"), quote!(crate::cordic::WriteDma)), // FIXME: stm32u5a crash on Cordic driver (("cordic", "READ"), quote!(crate::cordic::ReadDma)), // FIXME: stm32u5a crash on Cordic driver ] .into(); for p in METADATA.peripherals { if let Some(regs) = &p.registers { // FIXME: stm32u5a crash on Cordic driver if chip_name.starts_with("stm32u5a") && regs.kind == "cordic" { continue; } let mut dupe = HashSet::new(); for ch in p.dma_channels { if let Some(tr) = signals.get(&(regs.kind, ch.signal)) { let peri = format_ident!("{}", p.name); let channels = if let Some(channel) = &ch.channel { // Chip with DMA/BDMA, without DMAMUX vec![*channel] } else if let Some(dmamux) = &ch.dmamux { // Chip with DMAMUX METADATA .dma_channels .iter() .filter(|ch| ch.dmamux == Some(*dmamux)) .map(|ch| ch.name) .collect() } else if let Some(dma) = &ch.dma { // Chip with GPDMA METADATA .dma_channels .iter() .filter(|ch| ch.dma == *dma) .map(|ch| ch.name) .collect() } else { unreachable!(); }; for channel in channels { // Some chips have multiple request numbers for the same (peri, signal, channel) combos. // Ignore the dupes, picking the first one. Otherwise this causes conflicting trait impls let key = (ch.signal, channel.to_string()); if !dupe.insert(key) { continue; } let request = if let Some(request) = ch.request { let request = request as u8; quote!(#request) } else { quote!(()) }; let channel = format_ident!("{}", channel); g.extend(quote! { dma_trait_impl!(#tr, #peri, #channel, #request); }); } } } } } // ======== // Generate Div/Mul impls for RCC prescalers/dividers/multipliers. for e in rcc_registers.ir.enums { fn is_rcc_name(e: &str) -> bool { match e { "Pllp" | "Pllq" | "Pllr" | "Pllm" | "Plln" => true, "Timpre" | "Pllrclkpre" => false, e if e.ends_with("pre") || e.ends_with("pres") || e.ends_with("div") || e.ends_with("mul") => true, _ => false, } } #[derive(Copy, Clone, Debug)] struct Frac { num: u32, denom: u32, } impl Frac { fn simplify(self) -> Self { let d = gcd(self.num, self.denom); Self { num: self.num / d, denom: self.denom / d, } } } fn gcd(a: u32, b: u32) -> u32 { if b == 0 { return a; } gcd(b, a % b) } fn parse_num(n: &str) -> Result { for prefix in ["DIV", "MUL"] { if let Some(n) = n.strip_prefix(prefix) { let exponent = n.find('_').map(|e| n.len() - 1 - e).unwrap_or(0) as u32; let mantissa = n.replace('_', "").parse().map_err(|_| ())?; let f = Frac { num: mantissa, denom: 10u32.pow(exponent), }; return Ok(f.simplify()); } } Err(()) } if is_rcc_name(e.name) { let enum_name = format_ident!("{}", e.name); let mut muls = Vec::new(); let mut divs = Vec::new(); for v in e.variants { let Ok(val) = parse_num(v.name) else { panic!("could not parse mul/div. enum={} variant={}", e.name, v.name) }; let variant_name = format_ident!("{}", v.name); let variant = quote!(crate::pac::rcc::vals::#enum_name::#variant_name); let num = val.num; let denom = val.denom; muls.push(quote!(#variant => self * #num / #denom,)); divs.push(quote!(#variant => self * #denom / #num,)); } g.extend(quote! { impl core::ops::Div for crate::time::Hertz { type Output = crate::time::Hertz; fn div(self, rhs: crate::pac::rcc::vals::#enum_name) -> Self::Output { match rhs { #(#divs)* #[allow(unreachable_patterns)] _ => unreachable!(), } } } impl core::ops::Mul for crate::time::Hertz { type Output = crate::time::Hertz; fn mul(self, rhs: crate::pac::rcc::vals::#enum_name) -> Self::Output { match rhs { #(#muls)* #[allow(unreachable_patterns)] _ => unreachable!(), } } } }); } } // ======== // Write peripheral_interrupts module. let mut mt = TokenStream::new(); for p in METADATA.peripherals { let mut pt = TokenStream::new(); for irq in p.interrupts { let iname = format_ident!("{}", irq.interrupt); let sname = format_ident!("{}", irq.signal); pt.extend(quote!(pub type #sname = crate::interrupt::typelevel::#iname;)); } let pname = format_ident!("{}", p.name); mt.extend(quote!(pub mod #pname { #pt })); } g.extend(quote!(#[allow(non_camel_case_types)] pub mod peripheral_interrupts { #mt })); // ======== // Write foreach_foo! macrotables let mut flash_regions_table: Vec> = Vec::new(); let mut interrupts_table: Vec> = Vec::new(); let mut peripherals_table: Vec> = Vec::new(); let mut pins_table: Vec> = Vec::new(); let mut adc_table: Vec> = Vec::new(); for m in METADATA .memory .iter() .filter(|m| m.kind == MemoryRegionKind::Flash && m.settings.is_some()) { let settings = m.settings.as_ref().unwrap(); let row = vec![ get_flash_region_type_name(m.name), settings.write_size.to_string(), settings.erase_size.to_string(), ]; flash_regions_table.push(row); } let gpio_base = METADATA.peripherals.iter().find(|p| p.name == "GPIOA").unwrap().address as u32; let gpio_stride = 0x400; for p in METADATA.peripherals { if let Some(regs) = &p.registers { if regs.kind == "gpio" { let port_letter = p.name.chars().nth(4).unwrap(); assert_eq!(0, (p.address as u32 - gpio_base) % gpio_stride); let port_num = (p.address as u32 - gpio_base) / gpio_stride; for pin_num in 0u32..16 { let pin_name = format!("P{}{}", port_letter, pin_num); pins_table.push(vec![ pin_name.clone(), p.name.to_string(), port_num.to_string(), pin_num.to_string(), format!("EXTI{}", pin_num), ]); // If we have the split pins, we need to do a little extra work: // Add the "_C" variant to the table. The solution is not optimal, though. // Adding them only when the corresponding GPIOx also appears. // This should avoid unintended side-effects as much as possible. #[cfg(feature = "_split-pins-enabled")] for split_feature in &split_features { if split_feature.pin_name_without_c == pin_name { pins_table.push(vec![ split_feature.pin_name_with_c.to_string(), p.name.to_string(), port_num.to_string(), pin_num.to_string(), format!("EXTI{}", pin_num), ]); } } } } if regs.kind == "adc" { let adc_num = p.name.strip_prefix("ADC").unwrap(); let mut adc_common = None; for p2 in METADATA.peripherals { if let Some(common_nums) = p2.name.strip_prefix("ADC").and_then(|s| s.strip_suffix("_COMMON")) { if common_nums.contains(adc_num) { adc_common = Some(p2); } } } let adc_common = adc_common.map(|p| p.name).unwrap_or("none"); let row = vec![p.name.to_string(), adc_common.to_string(), "adc".to_string()]; adc_table.push(row); } for irq in p.interrupts { let row = vec![ p.name.to_string(), regs.kind.to_string(), regs.block.to_string(), irq.signal.to_string(), irq.interrupt.to_ascii_uppercase(), ]; interrupts_table.push(row) } let row = vec![regs.kind.to_string(), p.name.to_string()]; peripherals_table.push(row); } } let mut dmas = TokenStream::new(); let has_dmamux = METADATA .peripherals .iter() .flat_map(|p| &p.registers) .any(|p| p.kind == "dmamux"); let mut dma_irqs: BTreeMap<&str, Vec> = BTreeMap::new(); for p in METADATA.peripherals { if let Some(r) = &p.registers { if r.kind == "dma" || r.kind == "bdma" || r.kind == "gpdma" || r.kind == "lpdma" { for irq in p.interrupts { let ch_name = format!("{}_{}", p.name, irq.signal); let ch = METADATA.dma_channels.iter().find(|c| c.name == ch_name).unwrap(); // Some H7 chips have BDMA1 hardcoded for DFSDM, ie no DMAMUX. It's unsupported, skip it. if has_dmamux && ch.dmamux.is_none() { continue; } dma_irqs.entry(irq.interrupt).or_default().push(ch_name); } } } } #[cfg(feature = "_dual-core")] let mut dma_ch_to_irq: BTreeMap<&str, Vec> = BTreeMap::new(); #[cfg(feature = "_dual-core")] for (irq, channels) in &dma_irqs { for channel in channels { dma_ch_to_irq.entry(channel).or_default().push(irq.to_string()); } } for (ch_idx, ch) in METADATA.dma_channels.iter().enumerate() { // Some H7 chips have BDMA1 hardcoded for DFSDM, ie no DMAMUX. It's unsupported, skip it. if has_dmamux && ch.dmamux.is_none() { continue; } let name = format_ident!("{}", ch.name); let idx = ch_idx as u8; #[cfg(feature = "_dual-core")] let irq = { let irq_name = if let Some(x) = &dma_ch_to_irq.get(ch.name) { format_ident!("{}", x.get(0).unwrap()) } else { panic!("failed to find dma interrupt") }; quote!(crate::pac::Interrupt::#irq_name) }; g.extend(quote!(dma_channel_impl!(#name, #idx);)); let dma = format_ident!("{}", ch.dma); let ch_num = ch.channel as usize; let dma_peri = METADATA.peripherals.iter().find(|p| p.name == ch.dma).unwrap(); let bi = dma_peri.registers.as_ref().unwrap(); let dma_info = match bi.kind { "dma" => quote!(crate::dma::DmaInfo::Dma(crate::pac::#dma)), "bdma" => quote!(crate::dma::DmaInfo::Bdma(crate::pac::#dma)), "gpdma" => quote!(crate::pac::#dma), "lpdma" => quote!(unsafe { crate::pac::gpdma::Gpdma::from_ptr(crate::pac::#dma.as_ptr())}), _ => panic!("bad dma channel kind {}", bi.kind), }; let dmamux = match &ch.dmamux { Some(dmamux) => { let dmamux = format_ident!("{}", dmamux); let num = ch.dmamux_channel.unwrap() as usize; quote! { dmamux: crate::dma::DmamuxInfo { mux: crate::pac::#dmamux, num: #num, }, } } None => quote!(), }; #[cfg(not(feature = "_dual-core"))] dmas.extend(quote! { crate::dma::ChannelInfo { dma: #dma_info, num: #ch_num, #dmamux }, }); #[cfg(feature = "_dual-core")] dmas.extend(quote! { crate::dma::ChannelInfo { dma: #dma_info, num: #ch_num, irq: #irq, #dmamux }, }); } // ======== // Generate DMA IRQs. let dma_irqs: TokenStream = dma_irqs .iter() .map(|(irq, channels)| { let irq = format_ident!("{}", irq); let channels = channels.iter().map(|c| format_ident!("{}", c)); quote! { #[cfg(feature = "rt")] #[crate::interrupt] unsafe fn #irq () { #( ::on_irq(); )* } } }) .collect(); g.extend(dma_irqs); g.extend(quote! { pub(crate) const DMA_CHANNELS: &[crate::dma::ChannelInfo] = &[#dmas]; }); for irq in METADATA.interrupts { let name = irq.name.to_ascii_uppercase(); interrupts_table.push(vec![name.clone()]); if name.contains("EXTI") { interrupts_table.push(vec!["EXTI".to_string(), name.clone()]); } } let mut m = clocks_macro.to_string(); // DO NOT ADD more macros like these. // These turned to be a bad idea! // Instead, make build.rs generate the final code. make_table(&mut m, "foreach_flash_region", &flash_regions_table); make_table(&mut m, "foreach_interrupt", &interrupts_table); make_table(&mut m, "foreach_peripheral", &peripherals_table); make_table(&mut m, "foreach_pin", &pins_table); make_table(&mut m, "foreach_adc", &adc_table); let out_dir = &PathBuf::from(env::var_os("OUT_DIR").unwrap()); let out_file = out_dir.join("_macros.rs").to_string_lossy().to_string(); fs::write(&out_file, m).unwrap(); rustfmt(&out_file); // ======== // Write generated.rs let out_file = out_dir.join("_generated.rs").to_string_lossy().to_string(); fs::write(&out_file, g.to_string()).unwrap(); rustfmt(&out_file); // ======== // Configs for multicore and for targeting groups of chips fn get_chip_cfgs(chip_name: &str) -> Vec { let mut cfgs = Vec::new(); // Multicore let mut s = chip_name.split('_'); let mut chip_name: String = s.next().unwrap().to_string(); let core_name = if let Some(c) = s.next() { if !c.starts_with("CM") { chip_name.push('_'); chip_name.push_str(c); None } else { Some(c) } } else { None }; if let Some(core) = core_name { cfgs.push(format!("{}_{}", &chip_name[..chip_name.len() - 2], core)); } // Configs for targeting groups of chips if &chip_name[..8] == "stm32wba" { cfgs.push(chip_name[..8].to_owned()); // stm32wba cfgs.push(chip_name[..10].to_owned()); // stm32wba52 cfgs.push(format!("package_{}", &chip_name[10..11])); cfgs.push(format!("flashsize_{}", &chip_name[11..12])); } else { if &chip_name[..8] == "stm32h7r" || &chip_name[..8] == "stm32h7s" { cfgs.push("stm32h7rs".to_owned()); } else { cfgs.push(chip_name[..7].to_owned()); // stm32f4 } cfgs.push(chip_name[..9].to_owned()); // stm32f429 cfgs.push(format!("{}x", &chip_name[..8])); // stm32f42x cfgs.push(format!("{}x{}", &chip_name[..7], &chip_name[8..9])); // stm32f4x9 cfgs.push(format!("package_{}", &chip_name[9..10])); cfgs.push(format!("flashsize_{}", &chip_name[10..11])); } // Mark the L4+ chips as they have many differences to regular L4. if &chip_name[..7] == "stm32l4" { if "pqrs".contains(&chip_name[7..8]) { cfgs.push("stm32l4_plus".to_owned()); } else { cfgs.push("stm32l4_nonplus".to_owned()); } } cfgs } cfgs.enable_all(&get_chip_cfgs(&chip_name)); for &chip_name in ALL_CHIPS.iter() { cfgs.declare_all(&get_chip_cfgs(&chip_name.to_ascii_lowercase())); } println!("cargo:rerun-if-changed=build.rs"); } enum GetOneError { None, Multiple, } trait IteratorExt: Iterator { fn get_one(self) -> Result; } impl IteratorExt for T { fn get_one(mut self) -> Result { match self.next() { None => Err(GetOneError::None), Some(res) => match self.next() { Some(_) => Err(GetOneError::Multiple), None => Ok(res), }, } } } fn make_table(out: &mut String, name: &str, data: &Vec>) { write!( out, "#[allow(unused)] macro_rules! {} {{ ($($pat:tt => $code:tt;)*) => {{ macro_rules! __{}_inner {{ $(($pat) => $code;)* ($_:tt) => {{}} }} ", name, name ) .unwrap(); for row in data { writeln!(out, " __{}_inner!(({}));", name, row.join(",")).unwrap(); } write!( out, " }}; }}" ) .unwrap(); } fn get_flash_region_name(name: &str) -> String { let name = name.replace("BANK_", "BANK").replace("REGION_", "REGION"); if name.contains("REGION") { name } else { name + "_REGION" } } fn get_flash_region_type_name(name: &str) -> String { get_flash_region_name(name) .replace("BANK", "Bank") .replace("REGION", "Region") .replace('_', "") } /// rustfmt a given path. /// Failures are logged to stderr and ignored. fn rustfmt(path: impl AsRef) { let path = path.as_ref(); match Command::new("rustfmt").args([path]).output() { Err(e) => { eprintln!("failed to exec rustfmt {:?}: {:?}", path, e); } Ok(out) => { if !out.status.success() { eprintln!("rustfmt {:?} failed:", path); eprintln!("=== STDOUT:"); std::io::stderr().write_all(&out.stdout).unwrap(); eprintln!("=== STDERR:"); std::io::stderr().write_all(&out.stderr).unwrap(); } } } }