Merge pull request #281 from thalesfragoso/i2c-256

i2c-v2: Support transfers with more than 255 bytes
This commit is contained in:
Thales 2021-07-17 17:21:50 -03:00 committed by GitHub
commit f4b8709bac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 179 additions and 98 deletions

View File

@ -6,6 +6,7 @@ mod _version;
use crate::peripherals;
pub use _version::*;
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
Bus,
Arbitration,
@ -13,6 +14,7 @@ pub enum Error {
Timeout,
Crc,
Overrun,
ZeroLengthTransfer,
}
pub(crate) mod sealed {

View File

@ -81,30 +81,40 @@ impl<'d, T: Instance> I2c<'d, T> {
}
}
fn master_read(&mut self, address: u8, length: usize, stop: Stop) {
fn master_read(&mut self, address: u8, length: usize, stop: Stop, reload: bool, restart: bool) {
assert!(length < 256 && length > 0);
// Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq)
while unsafe { T::regs().cr2().read().start() == i2c::vals::Start::START } {}
if !restart {
// Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq)
while unsafe { T::regs().cr2().read().start() == i2c::vals::Start::START } {}
}
// Set START and prepare to receive bytes into
// `buffer`. The START bit can be set even if the bus
// is BUSY or I2C is in slave mode.
let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED
} else {
i2c::vals::Reload::COMPLETED
};
unsafe {
T::regs().cr2().modify(|w| {
w.set_sadd((address << 1 | 0) as u16);
w.set_add10(i2c::vals::Add::BIT7);
w.set_rd_wrn(i2c::vals::RdWrn::READ);
w.set_nbytes(length as u8);
w.set_start(i2c::vals::Start::START);
w.set_autoend(stop.autoend());
w.set_reload(reload);
});
}
}
fn master_write(&mut self, address: u8, length: usize, stop: Stop) {
fn master_write(&mut self, address: u8, length: usize, stop: Stop, reload: bool) {
assert!(length < 256 && length > 0);
// Wait for any previous address sequence to end
@ -112,6 +122,12 @@ impl<'d, T: Instance> I2c<'d, T> {
// cycle (ie. up to 0.5/freq)
while unsafe { T::regs().cr2().read().start() == i2c::vals::Start::START } {}
let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED
} else {
i2c::vals::Reload::COMPLETED
};
// Set START and prepare to send `bytes`. The
// START bit can be set even if the bus is BUSY or
// I2C is in slave mode.
@ -123,21 +139,26 @@ impl<'d, T: Instance> I2c<'d, T> {
w.set_nbytes(length as u8);
w.set_start(i2c::vals::Start::START);
w.set_autoend(stop.autoend());
w.set_reload(reload);
});
}
}
fn master_re_start(&mut self, address: u8, length: usize, stop: Stop) {
fn master_continue(&mut self, length: usize, reload: bool) {
assert!(length < 256 && length > 0);
while unsafe { !T::regs().isr().read().tcr() } {}
let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED
} else {
i2c::vals::Reload::COMPLETED
};
unsafe {
T::regs().cr2().modify(|w| {
w.set_sadd((address << 1 | 1) as u16);
w.set_add10(i2c::vals::Add::BIT7);
w.set_rd_wrn(i2c::vals::RdWrn::READ);
w.set_nbytes(length as u8);
w.set_start(i2c::vals::Start::START);
w.set_autoend(stop.autoend());
w.set_reload(reload);
});
}
}
@ -224,28 +245,152 @@ impl<'d, T: Instance> I2c<'d, T> {
}
}
}
fn read(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error> {
let completed_chunks = buffer.len() / 255;
let total_chunks = if completed_chunks * 255 == buffer.len() {
completed_chunks
} else {
completed_chunks + 1
};
let last_chunk_idx = total_chunks.saturating_sub(1);
self.master_read(
address,
buffer.len().min(255),
Stop::Automatic,
last_chunk_idx != 0,
restart,
);
for (number, chunk) in buffer.chunks_mut(255).enumerate() {
if number != 0 {
self.master_continue(chunk.len(), number != last_chunk_idx);
}
for byte in chunk {
// Wait until we have received something
self.wait_rxne()?;
unsafe {
*byte = T::regs().rxdr().read().rxdata();
}
}
}
Ok(())
}
fn write(&mut self, address: u8, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
let completed_chunks = bytes.len() / 255;
let total_chunks = if completed_chunks * 255 == bytes.len() {
completed_chunks
} else {
completed_chunks + 1
};
let last_chunk_idx = total_chunks.saturating_sub(1);
// I2C start
//
// ST SAD+W
self.master_write(
address,
bytes.len().min(255),
Stop::Software,
last_chunk_idx != 0,
);
for (number, chunk) in bytes.chunks(255).enumerate() {
if number != 0 {
self.master_continue(chunk.len(), number != last_chunk_idx);
}
for byte in chunk {
// Wait until we are allowed to send data
// (START has been ACKed or last byte when
// through)
self.wait_txe()?;
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
}
}
// Wait until the write finishes
self.wait_tc()?;
if send_stop {
self.master_stop();
}
Ok(())
}
pub fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::ZeroLengthTransfer);
}
let first_length = bytes[0].len();
let last_slice_index = bytes.len() - 1;
self.master_write(
address,
first_length.min(255),
Stop::Software,
(first_length > 255) || (last_slice_index != 0),
);
for (idx, slice) in bytes.iter().enumerate() {
let slice_len = slice.len();
let completed_chunks = slice_len / 255;
let total_chunks = if completed_chunks * 255 == slice_len {
completed_chunks
} else {
completed_chunks + 1
};
let last_chunk_idx = total_chunks.saturating_sub(1);
if idx != 0 {
self.master_continue(
slice_len.min(255),
(idx != last_slice_index) || (slice_len > 255),
);
}
for (number, chunk) in slice.chunks(255).enumerate() {
if number != 0 {
self.master_continue(
chunk.len(),
(number != last_chunk_idx) || (idx != last_slice_index),
);
}
for byte in chunk {
// Wait until we are allowed to send data
// (START has been ACKed or last byte when
// through)
self.wait_txe()?;
// Put byte on the wire
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
}
}
}
// Wait until the write finishes
self.wait_tc()?;
self.master_stop();
Ok(())
}
}
impl<'d, T: Instance> Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
assert!(buffer.len() < 256 && buffer.len() > 0);
self.master_read(address, buffer.len(), Stop::Automatic);
for byte in buffer {
// Wait until we have received something
self.wait_rxne()?;
//*byte = self.i2c.rxdr.read().rxdata().bits();
unsafe {
*byte = T::regs().rxdr().read().rxdata();
}
}
// automatic STOP
Ok(())
self.read(address, buffer, false)
// Automatic Stop
}
}
@ -253,34 +398,7 @@ impl<'d, T: Instance> Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
// TODO support transfers of more than 255 bytes
assert!(bytes.len() < 256 && bytes.len() > 0);
// I2C start
//
// ST SAD+W
self.master_write(address, bytes.len(), Stop::Software);
for byte in bytes {
// Wait until we are allowed to send data
// (START has been ACKed or last byte when
// through)
self.wait_txe()?;
// Put byte on the wire
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
}
// Wait until the write finishes
self.wait_tc()?;
// Stop
self.master_stop();
Ok(())
self.write(address, bytes, true)
}
}
@ -293,48 +411,9 @@ impl<'d, T: Instance> WriteRead for I2c<'d, T> {
bytes: &[u8],
buffer: &mut [u8],
) -> Result<(), Self::Error> {
// TODO support transfers of more than 255 bytes
assert!(bytes.len() < 256 && bytes.len() > 0);
assert!(buffer.len() < 256 && buffer.len() > 0);
// I2C start
//
// ST SAD+W
self.master_write(address, bytes.len(), Stop::Software);
for byte in bytes {
// Wait until we are allowed to send data
// (START has been ACKed or last byte went through)
self.wait_txe()?;
// Put byte on the wire
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
}
}
// Wait until the write finishes before beginning to read.
self.wait_tc()?;
// I2C re-start
//
// SR SAD+R
self.master_re_start(address, buffer.len(), Stop::Automatic);
for byte in buffer {
// Wait until we have received something
self.wait_rxne()?;
//*byte = self.i2c.rxdr.read().rxdata().bits();
unsafe {
*byte = T::regs().rxdr().read().rxdata();
}
}
// automatic STOP
Ok(())
self.write(address, bytes, false)?;
self.read(address, buffer, true)
// Automatic Stop
}
}