change existing pwm example to reflect both existing ways to use pwm output

This commit is contained in:
rafael 2024-10-21 11:55:10 +02:00
parent 693bd8c6de
commit f32b0fbc3b

View File

@ -1,6 +1,8 @@
//! This example shows how to use PWM (Pulse Width Modulation) in the RP2040 chip. //! This example shows how to use PWM (Pulse Width Modulation) in the RP235x chip.
//! //!
//! The LED on the RP Pico W board is connected differently. Add a LED and resistor to another pin. //! We demonstrate two ways of using PWM:
//! 1. Via config
//! 2. Via setting a duty cycle
#![no_std] #![no_std]
#![no_main] #![no_main]
@ -8,8 +10,10 @@
use defmt::*; use defmt::*;
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_rp::block::ImageDef; use embassy_rp::block::ImageDef;
use embassy_rp::pwm::{Config, Pwm}; use embassy_rp::peripherals::{PIN_25, PIN_4, PWM_SLICE2, PWM_SLICE4};
use embassy_rp::pwm::{Config, Pwm, SetDutyCycle};
use embassy_time::Timer; use embassy_time::Timer;
// use embedded_hal_1::pwm::SetDutyCycle;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
#[link_section = ".start_block"] #[link_section = ".start_block"]
@ -17,13 +21,22 @@ use {defmt_rtt as _, panic_probe as _};
pub static IMAGE_DEF: ImageDef = ImageDef::secure_exe(); pub static IMAGE_DEF: ImageDef = ImageDef::secure_exe();
#[embassy_executor::main] #[embassy_executor::main]
async fn main(_spawner: Spawner) { async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());
spawner.spawn(pwm_set_config(p.PWM_SLICE4, p.PIN_25)).unwrap();
spawner.spawn(pwm_set_dutycycle(p.PWM_SLICE2, p.PIN_4)).unwrap();
}
let mut c: Config = Default::default(); /// Demonstrate PWM by modifying & applying the config
c.top = 0x8000; ///
/// Using the onboard led, if You are using a different Board than plain Pico2 (i.e. W variant)
/// you must use another slice & pin and an appropriate resistor.
#[embassy_executor::task]
async fn pwm_set_config(slice4: PWM_SLICE4, pin25: PIN_25) {
let mut c = Config::default();
c.top = 32_768;
c.compare_b = 8; c.compare_b = 8;
let mut pwm = Pwm::new_output_b(p.PWM_SLICE4, p.PIN_25, c.clone()); let mut pwm = Pwm::new_output_b(slice4, pin25, c.clone());
loop { loop {
info!("current LED duty cycle: {}/32768", c.compare_b); info!("current LED duty cycle: {}/32768", c.compare_b);
@ -32,3 +45,31 @@ async fn main(_spawner: Spawner) {
pwm.set_config(&c); pwm.set_config(&c);
} }
} }
/// Demonstrate PWM by setting duty cycle
///
/// Using GP4 in Slice2, make sure to use an appropriate resistor.
#[embassy_executor::task]
async fn pwm_set_dutycycle(slice2: PWM_SLICE2, pin4: PIN_4) {
let mut c = Config::default();
c.top = 32_768;
let mut pwm = Pwm::new_output_a(slice2, pin4, c.clone());
loop {
// 100% duty cycle, fully on
pwm.set_duty_cycle_fully_on().unwrap();
Timer::after_secs(1).await;
// 50% duty cycle, half on. Expressed as simple percentage.
pwm.set_duty_cycle_percent(50).unwrap();
Timer::after_secs(1).await;
// 25% duty cycle, quarter on. Expressed as (duty / max_duty)
pwm.set_duty_cycle(8_192 / c.top).unwrap();
Timer::after_secs(1).await;
// 0% duty cycle, fully off.
pwm.set_duty_cycle_fully_off().unwrap();
Timer::after_secs(1).await;
}
}