Add oversampling and differential for g4

This commit is contained in:
Chen Yuheng 2024-07-11 10:33:43 +08:00
parent 6636a5835b
commit f01ffbcc12
4 changed files with 165 additions and 0 deletions

View File

@ -1,4 +1,8 @@
#[allow(unused)] #[allow(unused)]
#[cfg(stm32g4)]
use pac::adc::vals::{Adcaldif, Difsel, Exten, Rovsm, Trovs};
#[cfg(stm32h7)]
use pac::adc::vals::{Adcaldif, Difsel, Exten}; use pac::adc::vals::{Adcaldif, Difsel, Exten};
use pac::adccommon::vals::Presc; use pac::adccommon::vals::Presc;
@ -228,6 +232,62 @@ impl<'d, T: Instance> Adc<'d, T> {
Vbat {} Vbat {}
} }
/// Enable differential channel.
/// Caution:
/// : When configuring the channel “i” in differential input mode, its negative input voltage VINN[i]
/// is connected to another channel. As a consequence, this channel is no longer usable in
/// single-ended mode or in differential mode and must never be configured to be converted.
/// Some channels are shared between ADC1/ADC2/ADC3/ADC4/ADC5: this can make the
/// channel on the other ADC unusable. The only exception is when ADC master and the slave
/// operate in interleaved mode.
#[cfg(stm32g4)]
pub fn set_differential_channel(&mut self, ch: usize ,enable: bool) {
T::regs().cr().modify(|w| w.set_aden(false)); // disable adc
T::regs().difsel().modify(|w| {
w.set_difsel(ch, if enable { Difsel::DIFFERENTIAL } else { Difsel::SINGLEENDED });
});
T::regs().cr().modify(|w| w.set_aden(true));
}
#[cfg(stm32g4)]
pub fn set_differential(&mut self, channel: &mut impl AdcChannel<T>, enable: bool) {
self.set_differential_channel(channel.channel() as usize, enable);
}
/// Set oversampling shift.
#[cfg(stm32g4)]
pub fn set_oversampling_shift(&mut self, shift: u8) {
T::regs().cfgr2().modify(|reg| reg.set_ovss(shift));
}
/// Set oversampling ratio.
#[cfg(stm32g4)]
pub fn set_oversampling_ratio(&mut self, ratio: u8) {
T::regs().cfgr2().modify(|reg| reg.set_ovsr(ratio));
}
/// Enable oversampling in regular mode.
#[cfg(stm32g4)]
pub fn enable_regular_oversampling_mode(&mut self,mode:Rovsm,trig_mode:Trovs, enable: bool) {
T::regs().cfgr2().modify(|reg| reg.set_trovs(trig_mode));
T::regs().cfgr2().modify(|reg| reg.set_rovsm(mode));
T::regs().cfgr2().modify(|reg| reg.set_rovse(enable));
}
// Reads that are not implemented as INJECTED in "blocking_read"
// #[cfg(stm32g4)]
// pub fn enalble_injected_oversampling_mode(&mut self, enable: bool) {
// T::regs().cfgr2().modify(|reg| reg.set_jovse(enable));
// }
// #[cfg(stm32g4)]
// pub fn enable_oversampling_regular_injected_mode(&mut self, enable: bool) {
// // the regularoversampling mode is forced to resumed mode (ROVSM bit ignored),
// T::regs().cfgr2().modify(|reg| reg.set_rovse(enable));
// T::regs().cfgr2().modify(|reg| reg.set_jovse(enable));
// }
/// Set the ADC sample time. /// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) { pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time; self.sample_time = sample_time;

View File

@ -26,6 +26,7 @@ use embassy_sync::waitqueue::AtomicWaker;
#[cfg(not(any(adc_f1, adc_f3_v2)))] #[cfg(not(any(adc_f1, adc_f3_v2)))]
pub use crate::pac::adc::vals::Res as Resolution; pub use crate::pac::adc::vals::Res as Resolution;
pub use crate::pac::adc::vals::SampleTime; pub use crate::pac::adc::vals::SampleTime;
pub use crate::pac::adc::vals ;
use crate::peripherals; use crate::peripherals;
dma_trait!(RxDma, Instance); dma_trait!(RxDma, Instance);

View File

@ -0,0 +1,47 @@
//! adc differential mode example
//!
//! This example uses adc1 in differential mode
//! p:pa0 n:pa1
#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::adc::{Adc, SampleTime};
use embassy_stm32::Config;
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config = Config::default();
{
use embassy_stm32::rcc::*;
config.rcc.pll = Some(Pll {
source: PllSource::HSI,
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL85,
divp: None,
divq: None,
// Main system clock at 170 MHz
divr: Some(PllRDiv::DIV2),
});
config.rcc.mux.adc12sel = mux::Adcsel::SYS;
config.rcc.sys = Sysclk::PLL1_R;
}
let mut p = embassy_stm32::init(config);
let mut adc = Adc::new(p.ADC1);
adc.set_sample_time(SampleTime::CYCLES247_5);
adc.set_differential(&mut p.PA0, true); //p:pa0,n:pa1
// can also use
// adc.set_differential_channel(1, true);
info!("adc initialized");
loop {
let measured = adc.blocking_read(&mut p.PA0);
info!("data: {}", measured);
Timer::after_millis(500).await;
}
}

View File

@ -0,0 +1,57 @@
//! adc oversampling example
//!
//! This example uses adc oversampling to achieve 16bit data
#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::adc::vals::{Rovsm, Trovs};
use embassy_stm32::adc::{Adc, SampleTime};
use embassy_stm32::Config;
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config = Config::default();
{
use embassy_stm32::rcc::*;
config.rcc.pll = Some(Pll {
source: PllSource::HSI,
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL85,
divp: None,
divq: None,
// Main system clock at 170 MHz
divr: Some(PllRDiv::DIV2),
});
config.rcc.mux.adc12sel = mux::Adcsel::SYS;
config.rcc.sys = Sysclk::PLL1_R;
}
let mut p = embassy_stm32::init(config);
let mut adc = Adc::new(p.ADC1);
adc.set_sample_time(SampleTime::CYCLES6_5);
// From https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
// page652 Oversampler
// Table 172. Maximum output results vs N and M. Grayed values indicates truncation
// 0x00 oversampling ratio X2
// 0x01 oversampling ratio X4
// 0x02 oversampling ratio X8
// 0x03 oversampling ratio X16
// 0x04 oversampling ratio X32
// 0x05 oversampling ratio X64
// 0x06 oversampling ratio X128
// 0x07 oversampling ratio X256
adc.set_oversampling_ratio(0x03); // ratio X3
adc.set_oversampling_shift(0b0000); // no shift
adc.enable_regular_oversampling_mode(Rovsm::RESUMED, Trovs::AUTOMATIC, true);
loop {
let measured = adc.blocking_read(&mut p.PA0);
info!("data: 0x{:X}", measured); //max 0xFFF0 -> 65520
Timer::after_millis(500).await;
}
}