stm32/dma: add AnyChannel, add support for BDMA on H7.

This commit is contained in:
Dario Nieuwenhuis 2024-02-24 02:38:31 +01:00
parent f77d59500e
commit e67dfcb04f
12 changed files with 1210 additions and 2152 deletions

View File

@ -353,50 +353,6 @@ fn main() {
g.extend(quote! { pub mod flash_regions { #flash_regions } });
// ========
// Generate DMA IRQs.
let mut dma_irqs: BTreeMap<&str, Vec<(&str, &str, &str)>> = BTreeMap::new();
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
if r.kind == "dma" || r.kind == "bdma" || r.kind == "gpdma" {
if p.name == "BDMA1" {
// BDMA1 in H7 doesn't use DMAMUX, which breaks
continue;
}
for irq in p.interrupts {
dma_irqs
.entry(irq.interrupt)
.or_default()
.push((r.kind, p.name, irq.signal));
}
}
}
}
let dma_irqs: TokenStream = dma_irqs
.iter()
.map(|(irq, channels)| {
let irq = format_ident!("{}", irq);
let xdma = format_ident!("{}", channels[0].0);
let channels = channels.iter().map(|(_, dma, ch)| format_ident!("{}_{}", dma, ch));
quote! {
#[cfg(feature = "rt")]
#[crate::interrupt]
unsafe fn #irq () {
#(
<crate::peripherals::#channels as crate::dma::#xdma::sealed::Channel>::on_irq();
)*
}
}
})
.collect();
g.extend(dma_irqs);
// ========
// Extract the rcc registers
let rcc_registers = METADATA
@ -1189,7 +1145,6 @@ fn main() {
let mut interrupts_table: Vec<Vec<String>> = Vec::new();
let mut peripherals_table: Vec<Vec<String>> = Vec::new();
let mut pins_table: Vec<Vec<String>> = Vec::new();
let mut dma_channels_table: Vec<Vec<String>> = Vec::new();
let mut adc_common_table: Vec<Vec<String>> = Vec::new();
/*
@ -1283,51 +1238,108 @@ fn main() {
}
}
let mut dma_channel_count: usize = 0;
let mut bdma_channel_count: usize = 0;
let mut gpdma_channel_count: usize = 0;
let mut dmas = TokenStream::new();
let has_dmamux = METADATA
.peripherals
.iter()
.flat_map(|p| &p.registers)
.any(|p| p.kind == "dmamux");
for (ch_idx, ch) in METADATA.dma_channels.iter().enumerate() {
// Some H7 chips have BDMA1 hardcoded for DFSDM, ie no DMAMUX. It's unsupported, skip it.
if has_dmamux && ch.dmamux.is_none() {
continue;
}
let name = format_ident!("{}", ch.name);
let idx = ch_idx as u8;
g.extend(quote!(dma_channel_impl!(#name, #idx);));
let dma = format_ident!("{}", ch.dma);
let ch_num = ch.channel as usize;
for ch in METADATA.dma_channels {
let mut row = Vec::new();
let dma_peri = METADATA.peripherals.iter().find(|p| p.name == ch.dma).unwrap();
let bi = dma_peri.registers.as_ref().unwrap();
let num;
match bi.kind {
"dma" => {
num = dma_channel_count;
dma_channel_count += 1;
}
"bdma" => {
num = bdma_channel_count;
bdma_channel_count += 1;
}
"gpdma" => {
num = gpdma_channel_count;
gpdma_channel_count += 1;
}
let dma_info = match bi.kind {
"dma" => quote!(crate::dma::DmaInfo::Dma(crate::pac::#dma)),
"bdma" => quote!(crate::dma::DmaInfo::Bdma(crate::pac::#dma)),
"gpdma" => quote!(crate::pac::#dma),
_ => panic!("bad dma channel kind {}", bi.kind),
};
let dmamux = match &ch.dmamux {
Some(dmamux) => {
let dmamux = format_ident!("{}", dmamux);
let num = ch.dmamux_channel.unwrap() as usize;
g.extend(quote!(dmamux_channel_impl!(#name, #dmamux);));
quote! {
dmamux: crate::dma::DmamuxInfo {
mux: crate::pac::#dmamux,
num: #num,
},
}
}
None => quote!(),
};
dmas.extend(quote! {
crate::dma::ChannelInfo {
dma: #dma_info,
num: #ch_num,
#dmamux
},
});
}
row.push(ch.name.to_string());
row.push(ch.dma.to_string());
row.push(bi.kind.to_string());
row.push(ch.channel.to_string());
row.push(num.to_string());
if let Some(dmamux) = &ch.dmamux {
let dmamux_channel = ch.dmamux_channel.unwrap();
row.push(format!("{{dmamux: {}, dmamux_channel: {}}}", dmamux, dmamux_channel));
} else {
row.push("{}".to_string());
// ========
// Generate DMA IRQs.
let mut dma_irqs: BTreeMap<&str, Vec<String>> = BTreeMap::new();
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
if r.kind == "dma" || r.kind == "bdma" || r.kind == "gpdma" {
for irq in p.interrupts {
let ch_name = format!("{}_{}", p.name, irq.signal);
let ch = METADATA.dma_channels.iter().find(|c| c.name == ch_name).unwrap();
// Some H7 chips have BDMA1 hardcoded for DFSDM, ie no DMAMUX. It's unsupported, skip it.
if has_dmamux && ch.dmamux.is_none() {
continue;
}
dma_channels_table.push(row);
dma_irqs.entry(irq.interrupt).or_default().push(ch_name);
}
}
}
}
let dma_irqs: TokenStream = dma_irqs
.iter()
.map(|(irq, channels)| {
let irq = format_ident!("{}", irq);
let channels = channels.iter().map(|c| format_ident!("{}", c));
quote! {
#[cfg(feature = "rt")]
#[crate::interrupt]
unsafe fn #irq () {
#(
<crate::peripherals::#channels as crate::dma::sealed::ChannelInterrupt>::on_irq();
)*
}
}
})
.collect();
g.extend(dma_irqs);
g.extend(quote! {
pub(crate) const DMA_CHANNEL_COUNT: usize = #dma_channel_count;
pub(crate) const BDMA_CHANNEL_COUNT: usize = #bdma_channel_count;
pub(crate) const GPDMA_CHANNEL_COUNT: usize = #gpdma_channel_count;
pub(crate) const DMA_CHANNELS: &[crate::dma::ChannelInfo] = &[#dmas];
});
for irq in METADATA.interrupts {
@ -1347,7 +1359,6 @@ fn main() {
make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table);
make_table(&mut m, "foreach_pin", &pins_table);
make_table(&mut m, "foreach_dma_channel", &dma_channels_table);
make_table(&mut m, "foreach_adc", &adc_common_table);
let out_dir = &PathBuf::from(env::var_os("OUT_DIR").unwrap());

View File

@ -394,19 +394,7 @@ where
/// This method starts the capture and finishes when both the dma transfer and DCMI finish the frame transfer.
/// The implication is that the input buffer size must be exactly the size of the captured frame.
///
/// Note that when `buffer.len() > 0xffff` the capture future requires some real-time guarantees to be upheld
/// (must be polled fast enough so the buffers get switched before data is overwritten).
/// It is therefore recommended that it is run on higher priority executor.
pub async fn capture(&mut self, buffer: &mut [u32]) -> Result<(), Error> {
if buffer.len() <= 0xffff {
return self.capture_small(buffer).await;
} else {
return self.capture_giant(buffer).await;
}
}
async fn capture_small(&mut self, buffer: &mut [u32]) -> Result<(), Error> {
let r = self.inner.regs();
let src = r.dr().as_ptr() as *mut u32;
let request = self.dma.request();
@ -441,116 +429,6 @@ where
result
}
#[cfg(not(dma))]
async fn capture_giant(&mut self, _buffer: &mut [u32]) -> Result<(), Error> {
panic!("capturing to buffers larger than 0xffff is only supported on DMA for now, not on BDMA or GPDMA.");
}
#[cfg(dma)]
async fn capture_giant(&mut self, buffer: &mut [u32]) -> Result<(), Error> {
use crate::dma::TransferOptions;
let data_len = buffer.len();
let chunk_estimate = data_len / 0xffff;
let mut chunks = chunk_estimate + 1;
while data_len % chunks != 0 {
chunks += 1;
}
let chunk_size = data_len / chunks;
let mut remaining_chunks = chunks - 2;
let mut m0ar = buffer.as_mut_ptr();
let mut m1ar = unsafe { buffer.as_mut_ptr().add(chunk_size) };
let channel = &mut self.dma;
let request = channel.request();
let r = self.inner.regs();
let src = r.dr().as_ptr() as *mut u32;
let mut transfer = unsafe {
crate::dma::DoubleBuffered::new_read(
&mut self.dma,
request,
src,
m0ar,
m1ar,
chunk_size,
TransferOptions::default(),
)
};
let mut last_chunk_set_for_transfer = false;
let mut buffer0_last_accessible = false;
let dma_result = poll_fn(|cx| {
transfer.set_waker(cx.waker());
let buffer0_currently_accessible = transfer.is_buffer0_accessible();
// check if the accessible buffer changed since last poll
if buffer0_last_accessible == buffer0_currently_accessible {
return Poll::Pending;
}
buffer0_last_accessible = !buffer0_last_accessible;
if remaining_chunks != 0 {
if remaining_chunks % 2 == 0 && buffer0_currently_accessible {
m0ar = unsafe { m0ar.add(2 * chunk_size) };
unsafe { transfer.set_buffer0(m0ar) }
remaining_chunks -= 1;
} else if !buffer0_currently_accessible {
m1ar = unsafe { m1ar.add(2 * chunk_size) };
unsafe { transfer.set_buffer1(m1ar) };
remaining_chunks -= 1;
}
} else {
if buffer0_currently_accessible {
unsafe { transfer.set_buffer0(buffer.as_mut_ptr()) }
} else {
unsafe { transfer.set_buffer1(buffer.as_mut_ptr()) }
}
if last_chunk_set_for_transfer {
transfer.request_stop();
return Poll::Ready(());
}
last_chunk_set_for_transfer = true;
}
Poll::Pending
});
Self::clear_interrupt_flags();
Self::enable_irqs();
let result = poll_fn(|cx| {
STATE.waker.register(cx.waker());
let ris = crate::pac::DCMI.ris().read();
if ris.err_ris() {
crate::pac::DCMI.icr().write(|r| r.set_err_isc(true));
Poll::Ready(Err(Error::PeripheralError))
} else if ris.ovr_ris() {
crate::pac::DCMI.icr().write(|r| r.set_ovr_isc(true));
Poll::Ready(Err(Error::Overrun))
} else if ris.frame_ris() {
crate::pac::DCMI.icr().write(|r| r.set_frame_isc(true));
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
});
Self::toggle(true);
let (_, result) = embassy_futures::join::join(dma_result, result).await;
Self::toggle(false);
result
}
}
mod sealed {

View File

@ -1,740 +0,0 @@
//! Basic Direct Memory Acccess (BDMA)
use core::future::Future;
use core::pin::Pin;
use core::sync::atomic::{fence, AtomicUsize, Ordering};
use core::task::{Context, Poll, Waker};
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use super::ringbuffer::{DmaCtrl, OverrunError, ReadableDmaRingBuffer, WritableDmaRingBuffer};
use super::word::{Word, WordSize};
use super::Dir;
use crate::_generated::BDMA_CHANNEL_COUNT;
use crate::interrupt::typelevel::Interrupt;
use crate::interrupt::Priority;
use crate::pac;
use crate::pac::bdma::{regs, vals};
/// BDMA transfer options.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct TransferOptions {
/// Enable circular DMA
///
/// Note:
/// If you enable circular mode manually, you may want to build and `.await` the `Transfer` in a separate task.
/// Since DMA in circular mode need manually stop, `.await` in current task would block the task forever.
pub circular: bool,
/// Enable half transfer interrupt
pub half_transfer_ir: bool,
/// Enable transfer complete interrupt
pub complete_transfer_ir: bool,
}
impl Default for TransferOptions {
fn default() -> Self {
Self {
circular: false,
half_transfer_ir: false,
complete_transfer_ir: true,
}
}
}
impl From<WordSize> for vals::Size {
fn from(raw: WordSize) -> Self {
match raw {
WordSize::OneByte => Self::BITS8,
WordSize::TwoBytes => Self::BITS16,
WordSize::FourBytes => Self::BITS32,
}
}
}
impl From<Dir> for vals::Dir {
fn from(raw: Dir) -> Self {
match raw {
Dir::MemoryToPeripheral => Self::FROMMEMORY,
Dir::PeripheralToMemory => Self::FROMPERIPHERAL,
}
}
}
struct State {
ch_wakers: [AtomicWaker; BDMA_CHANNEL_COUNT],
complete_count: [AtomicUsize; BDMA_CHANNEL_COUNT],
}
impl State {
const fn new() -> Self {
const ZERO: AtomicUsize = AtomicUsize::new(0);
const AW: AtomicWaker = AtomicWaker::new();
Self {
ch_wakers: [AW; BDMA_CHANNEL_COUNT],
complete_count: [ZERO; BDMA_CHANNEL_COUNT],
}
}
}
static STATE: State = State::new();
/// safety: must be called only once
pub(crate) unsafe fn init(cs: critical_section::CriticalSection, irq_priority: Priority) {
foreach_interrupt! {
($peri:ident, bdma, $block:ident, $signal_name:ident, $irq:ident) => {
crate::interrupt::typelevel::$irq::set_priority_with_cs(cs, irq_priority);
crate::interrupt::typelevel::$irq::enable();
};
}
crate::_generated::init_bdma();
}
foreach_dma_channel! {
($channel_peri:ident, BDMA1, bdma, $channel_num:expr, $index:expr, $dmamux:tt) => {
// BDMA1 in H7 doesn't use DMAMUX, which breaks
};
($channel_peri:ident, $dma_peri:ident, bdma, $channel_num:expr, $index:expr, $dmamux:tt) => {
impl sealed::Channel for crate::peripherals::$channel_peri {
fn regs(&self) -> pac::bdma::Dma {
pac::$dma_peri
}
fn num(&self) -> usize {
$channel_num
}
fn index(&self) -> usize {
$index
}
fn on_irq() {
unsafe { on_irq_inner(pac::$dma_peri, $channel_num, $index) }
}
}
impl Channel for crate::peripherals::$channel_peri {}
};
}
/// Safety: Must be called with a matching set of parameters for a valid dma channel
pub(crate) unsafe fn on_irq_inner(dma: pac::bdma::Dma, channel_num: usize, index: usize) {
let isr = dma.isr().read();
let cr = dma.ch(channel_num).cr();
if isr.teif(channel_num) {
panic!("DMA: error on BDMA@{:08x} channel {}", dma.as_ptr() as u32, channel_num);
}
if isr.htif(channel_num) && cr.read().htie() {
// Acknowledge half transfer complete interrupt
dma.ifcr().write(|w| w.set_htif(channel_num, true));
} else if isr.tcif(channel_num) && cr.read().tcie() {
// Acknowledge transfer complete interrupt
dma.ifcr().write(|w| w.set_tcif(channel_num, true));
#[cfg(not(armv6m))]
STATE.complete_count[index].fetch_add(1, Ordering::Release);
#[cfg(armv6m)]
critical_section::with(|_| {
let x = STATE.complete_count[index].load(Ordering::Relaxed);
STATE.complete_count[index].store(x + 1, Ordering::Release);
})
} else {
return;
}
STATE.ch_wakers[index].wake();
}
/// DMA request type alias.
#[cfg(any(bdma_v2, dmamux))]
pub type Request = u8;
/// DMA request type alias.
#[cfg(not(any(bdma_v2, dmamux)))]
pub type Request = ();
/// DMA channel.
#[cfg(dmamux)]
pub trait Channel: sealed::Channel + Peripheral<P = Self> + 'static + super::dmamux::MuxChannel {}
/// DMA channel.
#[cfg(not(dmamux))]
pub trait Channel: sealed::Channel + Peripheral<P = Self> + 'static {}
pub(crate) mod sealed {
use super::*;
pub trait Channel {
fn regs(&self) -> pac::bdma::Dma;
fn num(&self) -> usize;
fn index(&self) -> usize;
fn on_irq();
}
}
/// DMA transfer.
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Transfer<'a, C: Channel> {
channel: PeripheralRef<'a, C>,
}
impl<'a, C: Channel> Transfer<'a, C> {
/// Create a new read DMA transfer (peripheral to memory).
pub unsafe fn new_read<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
peri_addr: *mut W,
buf: &'a mut [W],
options: TransferOptions,
) -> Self {
Self::new_read_raw(channel, request, peri_addr, buf, options)
}
/// Create a new read DMA transfer (peripheral to memory), using raw pointers.
pub unsafe fn new_read_raw<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
peri_addr: *mut W,
buf: *mut [W],
options: TransferOptions,
) -> Self {
into_ref!(channel);
let (ptr, len) = super::slice_ptr_parts_mut(buf);
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel,
request,
Dir::PeripheralToMemory,
peri_addr as *const u32,
ptr as *mut u32,
len,
true,
W::size(),
options,
)
}
/// Create a new write DMA transfer (memory to peripheral).
pub unsafe fn new_write<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
buf: &'a [W],
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
Self::new_write_raw(channel, request, buf, peri_addr, options)
}
/// Create a new write DMA transfer (memory to peripheral), using raw pointers.
pub unsafe fn new_write_raw<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
buf: *const [W],
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
into_ref!(channel);
let (ptr, len) = super::slice_ptr_parts(buf);
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel,
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
ptr as *mut u32,
len,
true,
W::size(),
options,
)
}
/// Create a new write DMA transfer (memory to peripheral), writing the same value repeatedly.
pub unsafe fn new_write_repeated<W: Word>(
channel: impl Peripheral<P = C> + 'a,
request: Request,
repeated: &'a W,
count: usize,
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
into_ref!(channel);
Self::new_inner(
channel,
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
repeated as *const W as *mut u32,
count,
false,
W::size(),
options,
)
}
unsafe fn new_inner(
channel: PeripheralRef<'a, C>,
_request: Request,
dir: Dir,
peri_addr: *const u32,
mem_addr: *mut u32,
mem_len: usize,
incr_mem: bool,
data_size: WordSize,
options: TransferOptions,
) -> Self {
let ch = channel.regs().ch(channel.num());
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
#[cfg(bdma_v2)]
critical_section::with(|_| channel.regs().cselr().modify(|w| w.set_cs(channel.num(), _request)));
let mut this = Self { channel };
this.clear_irqs();
STATE.complete_count[this.channel.index()].store(0, Ordering::Release);
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&*this.channel, _request);
ch.par().write_value(peri_addr as u32);
ch.mar().write_value(mem_addr as u32);
ch.ndtr().write(|w| w.set_ndt(mem_len as u16));
ch.cr().write(|w| {
w.set_psize(data_size.into());
w.set_msize(data_size.into());
w.set_minc(incr_mem);
w.set_dir(dir.into());
w.set_teie(true);
w.set_tcie(options.complete_transfer_ir);
w.set_htie(options.half_transfer_ir);
w.set_circ(options.circular);
if options.circular {
debug!("Setting circular mode");
}
w.set_pl(vals::Pl::VERYHIGH);
w.set_en(true);
});
this
}
fn clear_irqs(&mut self) {
self.channel.regs().ifcr().write(|w| {
w.set_tcif(self.channel.num(), true);
w.set_teif(self.channel.num(), true);
});
}
/// Request the transfer to stop.
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
ch.cr().write(|w| {
w.set_teie(true);
w.set_tcie(true);
});
}
/// Return whether this transfer is still running.
///
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
let en = ch.cr().read().en();
let circular = ch.cr().read().circ();
let tcif = STATE.complete_count[self.channel.index()].load(Ordering::Acquire) != 0;
en && (circular || !tcif)
}
/// Get the total remaining transfers for the channel.
///
/// This will be zero for transfers that completed instead of being canceled with [`request_stop`](Self::request_stop).
pub fn get_remaining_transfers(&self) -> u16 {
let ch = self.channel.regs().ch(self.channel.num());
ch.ndtr().read().ndt()
}
/// Blocking wait until the transfer finishes.
pub fn blocking_wait(mut self) {
while self.is_running() {}
self.request_stop();
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
core::mem::forget(self);
}
}
impl<'a, C: Channel> Drop for Transfer<'a, C> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}
impl<'a, C: Channel> Unpin for Transfer<'a, C> {}
impl<'a, C: Channel> Future for Transfer<'a, C> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
STATE.ch_wakers[self.channel.index()].register(cx.waker());
if self.is_running() {
Poll::Pending
} else {
Poll::Ready(())
}
}
}
// ==============================
struct DmaCtrlImpl<'a, C: Channel>(PeripheralRef<'a, C>);
impl<'a, C: Channel> DmaCtrl for DmaCtrlImpl<'a, C> {
fn get_remaining_transfers(&self) -> usize {
let ch = self.0.regs().ch(self.0.num());
ch.ndtr().read().ndt() as usize
}
fn get_complete_count(&self) -> usize {
STATE.complete_count[self.0.index()].load(Ordering::Acquire)
}
fn reset_complete_count(&mut self) -> usize {
#[cfg(not(armv6m))]
return STATE.complete_count[self.0.index()].swap(0, Ordering::AcqRel);
#[cfg(armv6m)]
return critical_section::with(|_| {
let x = STATE.complete_count[self.0.index()].load(Ordering::Acquire);
STATE.complete_count[self.0.index()].store(0, Ordering::Release);
x
});
}
fn set_waker(&mut self, waker: &Waker) {
STATE.ch_wakers[self.0.index()].register(waker);
}
}
/// Ringbuffer for reading data using DMA circular mode.
pub struct ReadableRingBuffer<'a, C: Channel, W: Word> {
cr: regs::Cr,
channel: PeripheralRef<'a, C>,
ringbuf: ReadableDmaRingBuffer<'a, W>,
}
impl<'a, C: Channel, W: Word> ReadableRingBuffer<'a, C, W> {
/// Create a new ring buffer.
pub unsafe fn new(
channel: impl Peripheral<P = C> + 'a,
_request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
_options: TransferOptions,
) -> Self {
into_ref!(channel);
let len = buffer.len();
assert!(len > 0 && len <= 0xFFFF);
let dir = Dir::PeripheralToMemory;
let data_size = W::size();
let channel_number = channel.num();
let dma = channel.regs();
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
#[cfg(bdma_v2)]
critical_section::with(|_| channel.regs().cselr().modify(|w| w.set_cs(channel.num(), _request)));
let mut w = regs::Cr(0);
w.set_psize(data_size.into());
w.set_msize(data_size.into());
w.set_minc(true);
w.set_dir(dir.into());
w.set_teie(true);
w.set_htie(true);
w.set_tcie(true);
w.set_circ(true);
w.set_pl(vals::Pl::VERYHIGH);
w.set_en(true);
let buffer_ptr = buffer.as_mut_ptr();
let mut this = Self {
channel,
cr: w,
ringbuf: ReadableDmaRingBuffer::new(buffer),
};
this.clear_irqs();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&*this.channel, _request);
let ch = dma.ch(channel_number);
ch.par().write_value(peri_addr as u32);
ch.mar().write_value(buffer_ptr as u32);
ch.ndtr().write(|w| w.set_ndt(len as u16));
this
}
/// Start the ring buffer operation.
///
/// You must call this after creating it for it to work.
pub fn start(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().write_value(self.cr)
}
/// Clear all data in the ring buffer.
pub fn clear(&mut self) {
self.ringbuf.clear(&mut DmaCtrlImpl(self.channel.reborrow()));
}
/// Read elements from the ring buffer
/// Return a tuple of the length read and the length remaining in the buffer
/// If not all of the elements were read, then there will be some elements in the buffer remaining
/// The length remaining is the capacity, ring_buf.len(), less the elements remaining after the read
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, buf: &mut [W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.read(&mut DmaCtrlImpl(self.channel.reborrow()), buf)
}
/// Read an exact number of elements from the ringbuffer.
///
/// Returns the remaining number of elements available for immediate reading.
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
///
/// Async/Wake Behavior:
/// The underlying DMA peripheral only can wake us when its buffer pointer has reached the halfway point,
/// and when it wraps around. This means that when called with a buffer of length 'M', when this
/// ring buffer was created with a buffer of size 'N':
/// - If M equals N/2 or N/2 divides evenly into M, this function will return every N/2 elements read on the DMA source.
/// - Otherwise, this function may need up to N/2 extra elements to arrive before returning.
pub async fn read_exact(&mut self, buffer: &mut [W]) -> Result<usize, OverrunError> {
self.ringbuf
.read_exact(&mut DmaCtrlImpl(self.channel.reborrow()), buffer)
.await
}
/// The capacity of the ringbuffer.
pub const fn capacity(&self) -> usize {
self.ringbuf.cap()
}
/// Set a waker to be woken when at least one byte is received.
pub fn set_waker(&mut self, waker: &Waker) {
DmaCtrlImpl(self.channel.reborrow()).set_waker(waker);
}
fn clear_irqs(&mut self) {
let dma = self.channel.regs();
dma.ifcr().write(|w| {
w.set_htif(self.channel.num(), true);
w.set_tcif(self.channel.num(), true);
w.set_teif(self.channel.num(), true);
});
}
/// Request DMA to stop.
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
// If the channel is enabled and transfer is not completed, we need to perform
// two separate write access to the CR register to disable the channel.
ch.cr().write(|w| {
w.set_teie(true);
w.set_htie(true);
w.set_tcie(true);
});
}
/// Return whether DMA is still running.
///
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().read().en()
}
}
impl<'a, C: Channel, W: Word> Drop for ReadableRingBuffer<'a, C, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}
/// Ringbuffer for writing data using DMA circular mode.
pub struct WritableRingBuffer<'a, C: Channel, W: Word> {
cr: regs::Cr,
channel: PeripheralRef<'a, C>,
ringbuf: WritableDmaRingBuffer<'a, W>,
}
impl<'a, C: Channel, W: Word> WritableRingBuffer<'a, C, W> {
/// Create a new ring buffer.
pub unsafe fn new(
channel: impl Peripheral<P = C> + 'a,
_request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
_options: TransferOptions,
) -> Self {
into_ref!(channel);
let len = buffer.len();
assert!(len > 0 && len <= 0xFFFF);
let dir = Dir::MemoryToPeripheral;
let data_size = W::size();
let channel_number = channel.num();
let dma = channel.regs();
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
#[cfg(bdma_v2)]
critical_section::with(|_| channel.regs().cselr().modify(|w| w.set_cs(channel.num(), _request)));
let mut w = regs::Cr(0);
w.set_psize(data_size.into());
w.set_msize(data_size.into());
w.set_minc(true);
w.set_dir(dir.into());
w.set_teie(true);
w.set_htie(true);
w.set_tcie(true);
w.set_circ(true);
w.set_pl(vals::Pl::VERYHIGH);
w.set_en(true);
let buffer_ptr = buffer.as_mut_ptr();
let mut this = Self {
channel,
cr: w,
ringbuf: WritableDmaRingBuffer::new(buffer),
};
this.clear_irqs();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&*this.channel, _request);
let ch = dma.ch(channel_number);
ch.par().write_value(peri_addr as u32);
ch.mar().write_value(buffer_ptr as u32);
ch.ndtr().write(|w| w.set_ndt(len as u16));
this
}
/// Start the ring buffer operation.
///
/// You must call this after creating it for it to work.
pub fn start(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().write_value(self.cr)
}
/// Clear all data in the ring buffer.
pub fn clear(&mut self) {
self.ringbuf.clear(&mut DmaCtrlImpl(self.channel.reborrow()));
}
/// Write elements directly to the raw buffer.
/// This can be used to fill the buffer before starting the DMA transfer.
#[allow(dead_code)]
pub fn write_immediate(&mut self, buf: &[W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.write_immediate(buf)
}
/// Write elements to the ring buffer
/// Return a tuple of the length written and the length remaining in the buffer
pub fn write(&mut self, buf: &[W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.write(&mut DmaCtrlImpl(self.channel.reborrow()), buf)
}
/// Write an exact number of elements to the ringbuffer.
pub async fn write_exact(&mut self, buffer: &[W]) -> Result<usize, OverrunError> {
self.ringbuf
.write_exact(&mut DmaCtrlImpl(self.channel.reborrow()), buffer)
.await
}
/// The capacity of the ringbuffer.
pub const fn capacity(&self) -> usize {
self.ringbuf.cap()
}
/// Set a waker to be woken when at least one byte is sent.
pub fn set_waker(&mut self, waker: &Waker) {
DmaCtrlImpl(self.channel.reborrow()).set_waker(waker);
}
fn clear_irqs(&mut self) {
let dma = self.channel.regs();
dma.ifcr().write(|w| {
w.set_htif(self.channel.num(), true);
w.set_tcif(self.channel.num(), true);
w.set_teif(self.channel.num(), true);
});
}
/// Request DMA to stop.
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
// If the channel is enabled and transfer is not completed, we need to perform
// two separate write access to the CR register to disable the channel.
ch.cr().write(|w| {
w.set_teie(true);
w.set_htie(true);
w.set_tcie(true);
});
}
/// Return whether DMA is still running.
///
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().read().en()
}
}
impl<'a, C: Channel, W: Word> Drop for WritableRingBuffer<'a, C, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,913 @@
use core::future::Future;
use core::pin::Pin;
use core::sync::atomic::{fence, AtomicUsize, Ordering};
use core::task::{Context, Poll, Waker};
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use super::ringbuffer::{DmaCtrl, OverrunError, ReadableDmaRingBuffer, WritableDmaRingBuffer};
use super::word::{Word, WordSize};
use super::{AnyChannel, Channel, Dir, Request, STATE};
use crate::interrupt::typelevel::Interrupt;
use crate::interrupt::Priority;
use crate::pac;
pub(crate) struct ChannelInfo {
pub(crate) dma: DmaInfo,
pub(crate) num: usize,
#[cfg(dmamux)]
pub(crate) dmamux: super::DmamuxInfo,
}
#[derive(Clone, Copy)]
pub(crate) enum DmaInfo {
#[cfg(dma)]
Dma(pac::dma::Dma),
#[cfg(bdma)]
Bdma(pac::bdma::Dma),
}
/// DMA transfer options.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct TransferOptions {
/// Peripheral burst transfer configuration
#[cfg(dma)]
pub pburst: Burst,
/// Memory burst transfer configuration
#[cfg(dma)]
pub mburst: Burst,
/// Flow control configuration
#[cfg(dma)]
pub flow_ctrl: FlowControl,
/// FIFO threshold for DMA FIFO mode. If none, direct mode is used.
#[cfg(dma)]
pub fifo_threshold: Option<FifoThreshold>,
/// Enable circular DMA
///
/// Note:
/// If you enable circular mode manually, you may want to build and `.await` the `Transfer` in a separate task.
/// Since DMA in circular mode need manually stop, `.await` in current task would block the task forever.
pub circular: bool,
/// Enable half transfer interrupt
pub half_transfer_ir: bool,
/// Enable transfer complete interrupt
pub complete_transfer_ir: bool,
}
impl Default for TransferOptions {
fn default() -> Self {
Self {
#[cfg(dma)]
pburst: Burst::Single,
#[cfg(dma)]
mburst: Burst::Single,
#[cfg(dma)]
flow_ctrl: FlowControl::Dma,
#[cfg(dma)]
fifo_threshold: None,
circular: false,
half_transfer_ir: false,
complete_transfer_ir: true,
}
}
}
#[cfg(dma)]
pub use dma_only::*;
#[cfg(dma)]
mod dma_only {
use pac::dma::vals;
use super::*;
impl From<WordSize> for vals::Size {
fn from(raw: WordSize) -> Self {
match raw {
WordSize::OneByte => Self::BITS8,
WordSize::TwoBytes => Self::BITS16,
WordSize::FourBytes => Self::BITS32,
}
}
}
impl From<Dir> for vals::Dir {
fn from(raw: Dir) -> Self {
match raw {
Dir::MemoryToPeripheral => Self::MEMORYTOPERIPHERAL,
Dir::PeripheralToMemory => Self::PERIPHERALTOMEMORY,
}
}
}
/// DMA transfer burst setting.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Burst {
/// Single transfer
Single,
/// Incremental burst of 4 beats
Incr4,
/// Incremental burst of 8 beats
Incr8,
/// Incremental burst of 16 beats
Incr16,
}
impl From<Burst> for vals::Burst {
fn from(burst: Burst) -> Self {
match burst {
Burst::Single => vals::Burst::SINGLE,
Burst::Incr4 => vals::Burst::INCR4,
Burst::Incr8 => vals::Burst::INCR8,
Burst::Incr16 => vals::Burst::INCR16,
}
}
}
/// DMA flow control setting.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum FlowControl {
/// Flow control by DMA
Dma,
/// Flow control by peripheral
Peripheral,
}
impl From<FlowControl> for vals::Pfctrl {
fn from(flow: FlowControl) -> Self {
match flow {
FlowControl::Dma => vals::Pfctrl::DMA,
FlowControl::Peripheral => vals::Pfctrl::PERIPHERAL,
}
}
}
/// DMA FIFO threshold.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum FifoThreshold {
/// 1/4 full FIFO
Quarter,
/// 1/2 full FIFO
Half,
/// 3/4 full FIFO
ThreeQuarters,
/// Full FIFO
Full,
}
impl From<FifoThreshold> for vals::Fth {
fn from(value: FifoThreshold) -> Self {
match value {
FifoThreshold::Quarter => vals::Fth::QUARTER,
FifoThreshold::Half => vals::Fth::HALF,
FifoThreshold::ThreeQuarters => vals::Fth::THREEQUARTERS,
FifoThreshold::Full => vals::Fth::FULL,
}
}
}
}
#[cfg(bdma)]
mod bdma_only {
use pac::bdma::vals;
use super::*;
impl From<WordSize> for vals::Size {
fn from(raw: WordSize) -> Self {
match raw {
WordSize::OneByte => Self::BITS8,
WordSize::TwoBytes => Self::BITS16,
WordSize::FourBytes => Self::BITS32,
}
}
}
impl From<Dir> for vals::Dir {
fn from(raw: Dir) -> Self {
match raw {
Dir::MemoryToPeripheral => Self::FROMMEMORY,
Dir::PeripheralToMemory => Self::FROMPERIPHERAL,
}
}
}
}
pub(crate) struct ChannelState {
waker: AtomicWaker,
complete_count: AtomicUsize,
}
impl ChannelState {
pub(crate) const NEW: Self = Self {
waker: AtomicWaker::new(),
complete_count: AtomicUsize::new(0),
};
}
/// safety: must be called only once
pub(crate) unsafe fn init(
cs: critical_section::CriticalSection,
#[cfg(dma)] dma_priority: Priority,
#[cfg(bdma)] bdma_priority: Priority,
) {
foreach_interrupt! {
($peri:ident, dma, $block:ident, $signal_name:ident, $irq:ident) => {
crate::interrupt::typelevel::$irq::set_priority_with_cs(cs, dma_priority);
crate::interrupt::typelevel::$irq::enable();
};
($peri:ident, bdma, $block:ident, $signal_name:ident, $irq:ident) => {
crate::interrupt::typelevel::$irq::set_priority_with_cs(cs, bdma_priority);
crate::interrupt::typelevel::$irq::enable();
};
}
crate::_generated::init_dma();
crate::_generated::init_bdma();
}
impl AnyChannel {
/// Safety: Must be called with a matching set of parameters for a valid dma channel
pub(crate) unsafe fn on_irq(&self) {
let info = self.info();
let state = &STATE[self.id as usize];
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => {
let cr = r.st(info.num).cr();
let isr = r.isr(info.num / 4).read();
if isr.teif(info.num % 4) {
panic!("DMA: error on DMA@{:08x} channel {}", r.as_ptr() as u32, info.num);
}
if isr.htif(info.num % 4) && cr.read().htie() {
// Acknowledge half transfer complete interrupt
r.ifcr(info.num / 4).write(|w| w.set_htif(info.num % 4, true));
} else if isr.tcif(info.num % 4) && cr.read().tcie() {
// Acknowledge transfer complete interrupt
r.ifcr(info.num / 4).write(|w| w.set_tcif(info.num % 4, true));
state.complete_count.fetch_add(1, Ordering::Release);
} else {
return;
}
state.waker.wake();
}
#[cfg(bdma)]
DmaInfo::Bdma(r) => {
let isr = r.isr().read();
let cr = r.ch(info.num).cr();
if isr.teif(info.num) {
panic!("DMA: error on BDMA@{:08x} channel {}", r.as_ptr() as u32, info.num);
}
if isr.htif(info.num) && cr.read().htie() {
// Acknowledge half transfer complete interrupt
r.ifcr().write(|w| w.set_htif(info.num, true));
} else if isr.tcif(info.num) && cr.read().tcie() {
// Acknowledge transfer complete interrupt
r.ifcr().write(|w| w.set_tcif(info.num, true));
#[cfg(not(armv6m))]
state.complete_count.fetch_add(1, Ordering::Release);
#[cfg(armv6m)]
critical_section::with(|_| {
let x = state.complete_count.load(Ordering::Relaxed);
state.complete_count.store(x + 1, Ordering::Release);
})
} else {
return;
}
state.waker.wake();
}
}
}
unsafe fn configure(
&self,
_request: Request,
dir: Dir,
peri_addr: *const u32,
mem_addr: *mut u32,
mem_len: usize,
incr_mem: bool,
data_size: WordSize,
options: TransferOptions,
) {
let info = self.info();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&info.dmamux, _request);
assert!(mem_len > 0 && mem_len <= 0xFFFF);
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => {
let ch = r.st(info.num);
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
self.clear_irqs();
ch.par().write_value(peri_addr as u32);
ch.m0ar().write_value(mem_addr as u32);
ch.ndtr().write_value(pac::dma::regs::Ndtr(mem_len as _));
ch.fcr().write(|w| {
if let Some(fth) = options.fifo_threshold {
// FIFO mode
w.set_dmdis(pac::dma::vals::Dmdis::DISABLED);
w.set_fth(fth.into());
} else {
// Direct mode
w.set_dmdis(pac::dma::vals::Dmdis::ENABLED);
}
});
ch.cr().write(|w| {
w.set_dir(dir.into());
w.set_msize(data_size.into());
w.set_psize(data_size.into());
w.set_pl(pac::dma::vals::Pl::VERYHIGH);
w.set_minc(incr_mem);
w.set_pinc(false);
w.set_teie(true);
w.set_htie(options.half_transfer_ir);
w.set_tcie(options.complete_transfer_ir);
w.set_circ(options.circular);
#[cfg(dma_v1)]
w.set_trbuff(true);
#[cfg(dma_v2)]
w.set_chsel(_request);
w.set_pburst(options.pburst.into());
w.set_mburst(options.mburst.into());
w.set_pfctrl(options.flow_ctrl.into());
w.set_en(false); // don't start yet
});
}
#[cfg(bdma)]
DmaInfo::Bdma(r) => {
#[cfg(bdma_v2)]
critical_section::with(|_| r.cselr().modify(|w| w.set_cs(info.num, _request)));
let state: &ChannelState = &STATE[self.id as usize];
let ch = r.ch(info.num);
state.complete_count.store(0, Ordering::Release);
self.clear_irqs();
ch.par().write_value(peri_addr as u32);
ch.mar().write_value(mem_addr as u32);
ch.ndtr().write(|w| w.set_ndt(mem_len as u16));
ch.cr().write(|w| {
w.set_psize(data_size.into());
w.set_msize(data_size.into());
w.set_minc(incr_mem);
w.set_dir(dir.into());
w.set_teie(true);
w.set_tcie(options.complete_transfer_ir);
w.set_htie(options.half_transfer_ir);
w.set_circ(options.circular);
w.set_pl(pac::bdma::vals::Pl::VERYHIGH);
w.set_en(false); // don't start yet
});
}
}
}
fn start(&self) {
let info = self.info();
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => {
let ch = r.st(info.num);
ch.cr().modify(|w| w.set_en(true))
}
#[cfg(bdma)]
DmaInfo::Bdma(r) => {
let ch = r.ch(info.num);
ch.cr().modify(|w| w.set_en(true));
}
}
}
fn clear_irqs(&self) {
let info = self.info();
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => {
let isrn = info.num / 4;
let isrbit = info.num % 4;
r.ifcr(isrn).write(|w| {
w.set_htif(isrbit, true);
w.set_tcif(isrbit, true);
w.set_teif(isrbit, true);
});
}
#[cfg(bdma)]
DmaInfo::Bdma(r) => {
r.ifcr().write(|w| {
w.set_htif(info.num, true);
w.set_tcif(info.num, true);
w.set_teif(info.num, true);
});
}
}
}
fn request_stop(&self) {
let info = self.info();
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => {
// Disable the channel. Keep the IEs enabled so the irqs still fire.
r.st(info.num).cr().write(|w| {
w.set_teie(true);
w.set_tcie(true);
});
}
#[cfg(bdma)]
DmaInfo::Bdma(r) => {
// Disable the channel. Keep the IEs enabled so the irqs still fire.
r.ch(info.num).cr().write(|w| {
w.set_teie(true);
w.set_tcie(true);
});
}
}
}
fn is_running(&self) -> bool {
let info = self.info();
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => r.st(info.num).cr().read().en(),
#[cfg(bdma)]
DmaInfo::Bdma(r) => {
let state: &ChannelState = &STATE[self.id as usize];
let ch = r.ch(info.num);
let en = ch.cr().read().en();
let circular = ch.cr().read().circ();
let tcif = state.complete_count.load(Ordering::Acquire) != 0;
en && (circular || !tcif)
}
}
}
fn get_remaining_transfers(&self) -> u16 {
let info = self.info();
match self.info().dma {
#[cfg(dma)]
DmaInfo::Dma(r) => r.st(info.num).ndtr().read().ndt(),
#[cfg(bdma)]
DmaInfo::Bdma(r) => r.ch(info.num).ndtr().read().ndt(),
}
}
}
/// DMA transfer.
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Transfer<'a> {
channel: PeripheralRef<'a, AnyChannel>,
}
impl<'a> Transfer<'a> {
/// Create a new read DMA transfer (peripheral to memory).
pub unsafe fn new_read<W: Word>(
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
peri_addr: *mut W,
buf: &'a mut [W],
options: TransferOptions,
) -> Self {
Self::new_read_raw(channel, request, peri_addr, buf, options)
}
/// Create a new read DMA transfer (peripheral to memory), using raw pointers.
pub unsafe fn new_read_raw<W: Word>(
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
peri_addr: *mut W,
buf: *mut [W],
options: TransferOptions,
) -> Self {
into_ref!(channel);
let (ptr, len) = super::slice_ptr_parts_mut(buf);
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel.map_into(),
request,
Dir::PeripheralToMemory,
peri_addr as *const u32,
ptr as *mut u32,
len,
true,
W::size(),
options,
)
}
/// Create a new write DMA transfer (memory to peripheral).
pub unsafe fn new_write<W: Word>(
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
buf: &'a [W],
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
Self::new_write_raw(channel, request, buf, peri_addr, options)
}
/// Create a new write DMA transfer (memory to peripheral), using raw pointers.
pub unsafe fn new_write_raw<W: Word>(
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
buf: *const [W],
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
into_ref!(channel);
let (ptr, len) = super::slice_ptr_parts(buf);
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel.map_into(),
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
ptr as *mut u32,
len,
true,
W::size(),
options,
)
}
/// Create a new write DMA transfer (memory to peripheral), writing the same value repeatedly.
pub unsafe fn new_write_repeated<W: Word>(
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
repeated: &'a W,
count: usize,
peri_addr: *mut W,
options: TransferOptions,
) -> Self {
into_ref!(channel);
Self::new_inner(
channel.map_into(),
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
repeated as *const W as *mut u32,
count,
false,
W::size(),
options,
)
}
unsafe fn new_inner(
channel: PeripheralRef<'a, AnyChannel>,
_request: Request,
dir: Dir,
peri_addr: *const u32,
mem_addr: *mut u32,
mem_len: usize,
incr_mem: bool,
data_size: WordSize,
options: TransferOptions,
) -> Self {
channel.configure(
_request, dir, peri_addr, mem_addr, mem_len, incr_mem, data_size, options,
);
channel.start();
Self { channel }
}
/// Request the transfer to stop.
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
self.channel.request_stop()
}
/// Return whether this transfer is still running.
///
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
self.channel.is_running()
}
/// Gets the total remaining transfers for the channel
/// Note: this will be zero for transfers that completed without cancellation.
pub fn get_remaining_transfers(&self) -> u16 {
self.channel.get_remaining_transfers()
}
/// Blocking wait until the transfer finishes.
pub fn blocking_wait(mut self) {
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
core::mem::forget(self);
}
}
impl<'a> Drop for Transfer<'a> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}
impl<'a> Unpin for Transfer<'a> {}
impl<'a> Future for Transfer<'a> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let state: &ChannelState = &STATE[self.channel.id as usize];
state.waker.register(cx.waker());
if self.is_running() {
Poll::Pending
} else {
Poll::Ready(())
}
}
}
// ==============================
struct DmaCtrlImpl<'a>(PeripheralRef<'a, AnyChannel>);
impl<'a> DmaCtrl for DmaCtrlImpl<'a> {
fn get_remaining_transfers(&self) -> usize {
self.0.get_remaining_transfers() as _
}
fn get_complete_count(&self) -> usize {
STATE[self.0.id as usize].complete_count.load(Ordering::Acquire)
}
fn reset_complete_count(&mut self) -> usize {
let state = &STATE[self.0.id as usize];
#[cfg(not(armv6m))]
return state.complete_count.swap(0, Ordering::AcqRel);
#[cfg(armv6m)]
return critical_section::with(|_| {
let x = state.complete_count.load(Ordering::Acquire);
state.complete_count.store(0, Ordering::Release);
x
});
}
fn set_waker(&mut self, waker: &Waker) {
STATE[self.0.id as usize].waker.register(waker);
}
}
/// Ringbuffer for receiving data using DMA circular mode.
pub struct ReadableRingBuffer<'a, W: Word> {
channel: PeripheralRef<'a, AnyChannel>,
ringbuf: ReadableDmaRingBuffer<'a, W>,
}
impl<'a, W: Word> ReadableRingBuffer<'a, W> {
/// Create a new ring buffer.
pub unsafe fn new(
channel: impl Peripheral<P = impl Channel> + 'a,
_request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
mut options: TransferOptions,
) -> Self {
into_ref!(channel);
let channel: PeripheralRef<'a, AnyChannel> = channel.map_into();
let buffer_ptr = buffer.as_mut_ptr();
let len = buffer.len();
let dir = Dir::PeripheralToMemory;
let data_size = W::size();
options.complete_transfer_ir = true;
options.circular = true;
channel.configure(
_request,
dir,
peri_addr as *mut u32,
buffer_ptr as *mut u32,
len,
true,
data_size,
options,
);
Self {
channel,
ringbuf: ReadableDmaRingBuffer::new(buffer),
}
}
/// Start the ring buffer operation.
///
/// You must call this after creating it for it to work.
pub fn start(&mut self) {
self.channel.start()
}
/// Clear all data in the ring buffer.
pub fn clear(&mut self) {
self.ringbuf.clear(&mut DmaCtrlImpl(self.channel.reborrow()));
}
/// Read elements from the ring buffer
/// Return a tuple of the length read and the length remaining in the buffer
/// If not all of the elements were read, then there will be some elements in the buffer remaining
/// The length remaining is the capacity, ring_buf.len(), less the elements remaining after the read
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, buf: &mut [W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.read(&mut DmaCtrlImpl(self.channel.reborrow()), buf)
}
/// Read an exact number of elements from the ringbuffer.
///
/// Returns the remaining number of elements available for immediate reading.
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
///
/// Async/Wake Behavior:
/// The underlying DMA peripheral only can wake us when its buffer pointer has reached the halfway point,
/// and when it wraps around. This means that when called with a buffer of length 'M', when this
/// ring buffer was created with a buffer of size 'N':
/// - If M equals N/2 or N/2 divides evenly into M, this function will return every N/2 elements read on the DMA source.
/// - Otherwise, this function may need up to N/2 extra elements to arrive before returning.
pub async fn read_exact(&mut self, buffer: &mut [W]) -> Result<usize, OverrunError> {
self.ringbuf
.read_exact(&mut DmaCtrlImpl(self.channel.reborrow()), buffer)
.await
}
/// The capacity of the ringbuffer
pub const fn capacity(&self) -> usize {
self.ringbuf.cap()
}
/// Set a waker to be woken when at least one byte is received.
pub fn set_waker(&mut self, waker: &Waker) {
DmaCtrlImpl(self.channel.reborrow()).set_waker(waker);
}
/// Request DMA to stop.
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
self.channel.request_stop()
}
/// Return whether DMA is still running.
///
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
self.channel.is_running()
}
}
impl<'a, W: Word> Drop for ReadableRingBuffer<'a, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}
/// Ringbuffer for writing data using DMA circular mode.
pub struct WritableRingBuffer<'a, W: Word> {
channel: PeripheralRef<'a, AnyChannel>,
ringbuf: WritableDmaRingBuffer<'a, W>,
}
impl<'a, W: Word> WritableRingBuffer<'a, W> {
/// Create a new ring buffer.
pub unsafe fn new(
channel: impl Peripheral<P = impl Channel> + 'a,
_request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
mut options: TransferOptions,
) -> Self {
into_ref!(channel);
let channel: PeripheralRef<'a, AnyChannel> = channel.map_into();
let len = buffer.len();
let dir = Dir::MemoryToPeripheral;
let data_size = W::size();
let buffer_ptr = buffer.as_mut_ptr();
options.complete_transfer_ir = true;
options.circular = true;
channel.configure(
_request,
dir,
peri_addr as *mut u32,
buffer_ptr as *mut u32,
len,
true,
data_size,
options,
);
Self {
channel,
ringbuf: WritableDmaRingBuffer::new(buffer),
}
}
/// Start the ring buffer operation.
///
/// You must call this after creating it for it to work.
pub fn start(&mut self) {
self.channel.start()
}
/// Clear all data in the ring buffer.
pub fn clear(&mut self) {
self.ringbuf.clear(&mut DmaCtrlImpl(self.channel.reborrow()));
}
/// Write elements directly to the raw buffer.
/// This can be used to fill the buffer before starting the DMA transfer.
#[allow(dead_code)]
pub fn write_immediate(&mut self, buf: &[W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.write_immediate(buf)
}
/// Write elements from the ring buffer
/// Return a tuple of the length written and the length remaining in the buffer
pub fn write(&mut self, buf: &[W]) -> Result<(usize, usize), OverrunError> {
self.ringbuf.write(&mut DmaCtrlImpl(self.channel.reborrow()), buf)
}
/// Write an exact number of elements to the ringbuffer.
pub async fn write_exact(&mut self, buffer: &[W]) -> Result<usize, OverrunError> {
self.ringbuf
.write_exact(&mut DmaCtrlImpl(self.channel.reborrow()), buffer)
.await
}
/// The capacity of the ringbuffer
pub const fn capacity(&self) -> usize {
self.ringbuf.cap()
}
/// Set a waker to be woken when at least one byte is received.
pub fn set_waker(&mut self, waker: &Waker) {
DmaCtrlImpl(self.channel.reborrow()).set_waker(waker);
}
/// Request DMA to stop.
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
self.channel.request_stop()
}
/// Return whether DMA is still running.
///
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
self.channel.is_running()
}
}
impl<'a, W: Word> Drop for WritableRingBuffer<'a, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}

View File

@ -1,9 +1,14 @@
#![macro_use]
use crate::{pac, peripherals};
use crate::pac;
pub(crate) fn configure_dmamux<M: MuxChannel>(channel: &M, request: u8) {
let ch_mux_regs = channel.mux_regs().ccr(channel.mux_num());
pub(crate) struct DmamuxInfo {
pub(crate) mux: pac::dmamux::Dmamux,
pub(crate) num: usize,
}
pub(crate) fn configure_dmamux(info: &DmamuxInfo, request: u8) {
let ch_mux_regs = info.mux.ccr(info.num);
ch_mux_regs.write(|reg| {
reg.set_nbreq(0);
reg.set_dmareq_id(request);
@ -15,11 +20,7 @@ pub(crate) fn configure_dmamux<M: MuxChannel>(channel: &M, request: u8) {
}
pub(crate) mod dmamux_sealed {
use super::*;
pub trait MuxChannel {
fn mux_regs(&self) -> pac::dmamux::Dmamux;
fn mux_num(&self) -> usize;
}
pub trait MuxChannel {}
}
/// DMAMUX1 instance.
@ -34,18 +35,11 @@ pub trait MuxChannel: dmamux_sealed::MuxChannel {
type Mux;
}
foreach_dma_channel! {
($channel_peri:ident, $dma_peri:ident, $version:ident, $channel_num:expr, $index:expr, {dmamux: $dmamux:ident, dmamux_channel: $dmamux_channel:expr}) => {
impl dmamux_sealed::MuxChannel for peripherals::$channel_peri {
fn mux_regs(&self) -> pac::dmamux::Dmamux {
pac::$dmamux
}
fn mux_num(&self) -> usize {
$dmamux_channel
}
}
impl MuxChannel for peripherals::$channel_peri {
type Mux = $dmamux;
macro_rules! dmamux_channel_impl {
($channel_peri:ident, $dmamux:ident) => {
impl crate::dma::dmamux_sealed::MuxChannel for crate::peripherals::$channel_peri {}
impl crate::dma::MuxChannel for crate::peripherals::$channel_peri {
type Mux = crate::dma::$dmamux;
}
};
}

View File

@ -9,13 +9,17 @@ use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use super::word::{Word, WordSize};
use super::Dir;
use crate::_generated::GPDMA_CHANNEL_COUNT;
use super::{AnyChannel, Channel, Dir, Request, STATE};
use crate::interrupt::typelevel::Interrupt;
use crate::interrupt::Priority;
use crate::pac;
use crate::pac::gpdma::vals;
pub(crate) struct ChannelInfo {
pub(crate) dma: pac::gpdma::Gpdma,
pub(crate) num: usize,
}
/// GPDMA transfer options.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -38,20 +42,15 @@ impl From<WordSize> for vals::ChTr1Dw {
}
}
struct State {
ch_wakers: [AtomicWaker; GPDMA_CHANNEL_COUNT],
pub(crate) struct ChannelState {
waker: AtomicWaker,
}
impl State {
const fn new() -> Self {
const AW: AtomicWaker = AtomicWaker::new();
Self {
ch_wakers: [AW; GPDMA_CHANNEL_COUNT],
impl ChannelState {
pub(crate) const NEW: Self = Self {
waker: AtomicWaker::new(),
};
}
}
}
static STATE: State = State::new();
/// safety: must be called only once
pub(crate) unsafe fn init(cs: critical_section::CriticalSection, irq_priority: Priority) {
@ -64,44 +63,27 @@ pub(crate) unsafe fn init(cs: critical_section::CriticalSection, irq_priority: P
crate::_generated::init_gpdma();
}
foreach_dma_channel! {
($channel_peri:ident, $dma_peri:ident, gpdma, $channel_num:expr, $index:expr, $dmamux:tt) => {
impl sealed::Channel for crate::peripherals::$channel_peri {
fn regs(&self) -> pac::gpdma::Gpdma {
pac::$dma_peri
}
fn num(&self) -> usize {
$channel_num
}
fn index(&self) -> usize {
$index
}
fn on_irq() {
unsafe { on_irq_inner(pac::$dma_peri, $channel_num, $index) }
}
}
impl Channel for crate::peripherals::$channel_peri {}
};
}
impl AnyChannel {
/// Safety: Must be called with a matching set of parameters for a valid dma channel
pub(crate) unsafe fn on_irq_inner(dma: pac::gpdma::Gpdma, channel_num: usize, index: usize) {
let ch = dma.ch(channel_num);
pub(crate) unsafe fn on_irq(&self) {
let info = self.info();
let state = &STATE[self.id as usize];
let ch = info.dma.ch(info.num);
let sr = ch.sr().read();
if sr.dtef() {
panic!(
"DMA: data transfer error on DMA@{:08x} channel {}",
dma.as_ptr() as u32,
channel_num
info.dma.as_ptr() as u32,
info.num
);
}
if sr.usef() {
panic!(
"DMA: user settings error on DMA@{:08x} channel {}",
dma.as_ptr() as u32,
channel_num
info.dma.as_ptr() as u32,
info.num
);
}
@ -110,41 +92,21 @@ pub(crate) unsafe fn on_irq_inner(dma: pac::gpdma::Gpdma, channel_num: usize, in
ch.cr().write(|_| {});
// Wake the future. It'll look at tcf and see it's set.
STATE.ch_wakers[index].wake();
state.waker.wake();
}
}
/// DMA request type alias. (also known as DMA channel number in some chips)
pub type Request = u8;
/// DMA channel.
#[cfg(dmamux)]
pub trait Channel: sealed::Channel + Peripheral<P = Self> + 'static + super::dmamux::MuxChannel {}
/// DMA channel.
#[cfg(not(dmamux))]
pub trait Channel: sealed::Channel + Peripheral<P = Self> + 'static {}
pub(crate) mod sealed {
use super::*;
pub trait Channel {
fn regs(&self) -> pac::gpdma::Gpdma;
fn num(&self) -> usize;
fn index(&self) -> usize;
fn on_irq();
}
}
/// DMA transfer.
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Transfer<'a, C: Channel> {
channel: PeripheralRef<'a, C>,
pub struct Transfer<'a> {
channel: PeripheralRef<'a, AnyChannel>,
}
impl<'a, C: Channel> Transfer<'a, C> {
impl<'a> Transfer<'a> {
/// Create a new read DMA transfer (peripheral to memory).
pub unsafe fn new_read<W: Word>(
channel: impl Peripheral<P = C> + 'a,
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
peri_addr: *mut W,
buf: &'a mut [W],
@ -155,7 +117,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
/// Create a new read DMA transfer (peripheral to memory), using raw pointers.
pub unsafe fn new_read_raw<W: Word>(
channel: impl Peripheral<P = C> + 'a,
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
peri_addr: *mut W,
buf: *mut [W],
@ -167,7 +129,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel,
channel.map_into(),
request,
Dir::PeripheralToMemory,
peri_addr as *const u32,
@ -181,7 +143,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
/// Create a new write DMA transfer (memory to peripheral).
pub unsafe fn new_write<W: Word>(
channel: impl Peripheral<P = C> + 'a,
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
buf: &'a [W],
peri_addr: *mut W,
@ -192,7 +154,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
/// Create a new write DMA transfer (memory to peripheral), using raw pointers.
pub unsafe fn new_write_raw<W: Word>(
channel: impl Peripheral<P = C> + 'a,
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
buf: *const [W],
peri_addr: *mut W,
@ -204,7 +166,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
assert!(len > 0 && len <= 0xFFFF);
Self::new_inner(
channel,
channel.map_into(),
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
@ -218,7 +180,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
/// Create a new write DMA transfer (memory to peripheral), writing the same value repeatedly.
pub unsafe fn new_write_repeated<W: Word>(
channel: impl Peripheral<P = C> + 'a,
channel: impl Peripheral<P = impl Channel> + 'a,
request: Request,
repeated: &'a W,
count: usize,
@ -228,7 +190,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
into_ref!(channel);
Self::new_inner(
channel,
channel.map_into(),
request,
Dir::MemoryToPeripheral,
peri_addr as *const u32,
@ -241,7 +203,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
}
unsafe fn new_inner(
channel: PeripheralRef<'a, C>,
channel: PeripheralRef<'a, AnyChannel>,
request: Request,
dir: Dir,
peri_addr: *const u32,
@ -251,7 +213,8 @@ impl<'a, C: Channel> Transfer<'a, C> {
data_size: WordSize,
_options: TransferOptions,
) -> Self {
let ch = channel.regs().ch(channel.num());
let info = channel.info();
let ch = info.dma.ch(info.num);
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
@ -311,10 +274,10 @@ impl<'a, C: Channel> Transfer<'a, C> {
///
/// This doesn't immediately stop the transfer, you have to wait until [`is_running`](Self::is_running) returns false.
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
ch.cr().modify(|w| {
w.set_susp(true);
})
let info = self.channel.info();
let ch = info.dma.ch(info.num);
ch.cr().modify(|w| w.set_susp(true))
}
/// Return whether this transfer is still running.
@ -322,7 +285,9 @@ impl<'a, C: Channel> Transfer<'a, C> {
/// If this returns `false`, it can be because either the transfer finished, or
/// it was requested to stop early with [`request_stop`](Self::request_stop).
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
let info = self.channel.info();
let ch = info.dma.ch(info.num);
let sr = ch.sr().read();
!sr.tcf() && !sr.suspf()
}
@ -330,7 +295,9 @@ impl<'a, C: Channel> Transfer<'a, C> {
/// Gets the total remaining transfers for the channel
/// Note: this will be zero for transfers that completed without cancellation.
pub fn get_remaining_transfers(&self) -> u16 {
let ch = self.channel.regs().ch(self.channel.num());
let info = self.channel.info();
let ch = info.dma.ch(info.num);
ch.br1().read().bndt()
}
@ -345,7 +312,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
}
}
impl<'a, C: Channel> Drop for Transfer<'a, C> {
impl<'a> Drop for Transfer<'a> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
@ -355,11 +322,12 @@ impl<'a, C: Channel> Drop for Transfer<'a, C> {
}
}
impl<'a, C: Channel> Unpin for Transfer<'a, C> {}
impl<'a, C: Channel> Future for Transfer<'a, C> {
impl<'a> Unpin for Transfer<'a> {}
impl<'a> Future for Transfer<'a> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
STATE.ch_wakers[self.channel.index()].register(cx.waker());
let state = &STATE[self.channel.id as usize];
state.waker.register(cx.waker());
if self.is_running() {
Poll::Pending

View File

@ -1,19 +1,10 @@
//! Direct Memory Access (DMA)
#![macro_use]
#[cfg(dma)]
pub(crate) mod dma;
#[cfg(dma)]
pub use dma::*;
// stm32h7 has both dma and bdma. In that case, we export dma as "main" dma,
// and bdma as "secondary", under `embassy_stm32::dma::bdma`.
#[cfg(all(bdma, dma))]
pub mod bdma;
#[cfg(all(bdma, not(dma)))]
pub(crate) mod bdma;
#[cfg(all(bdma, not(dma)))]
pub use bdma::*;
#[cfg(any(bdma, dma))]
mod dma_bdma;
#[cfg(any(bdma, dma))]
pub use dma_bdma::*;
#[cfg(gpdma)]
pub(crate) mod gpdma;
@ -22,16 +13,16 @@ pub use gpdma::*;
#[cfg(dmamux)]
mod dmamux;
#[cfg(dmamux)]
pub use dmamux::*;
pub(crate) mod ringbuffer;
pub mod word;
use core::mem;
use embassy_hal_internal::impl_peripheral;
use embassy_hal_internal::{impl_peripheral, Peripheral};
#[cfg(dmamux)]
pub use self::dmamux::*;
use crate::interrupt::Priority;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
@ -41,6 +32,73 @@ enum Dir {
PeripheralToMemory,
}
/// DMA request type alias. (also known as DMA channel number in some chips)
#[cfg(any(dma_v2, bdma_v2, gpdma, dmamux))]
pub type Request = u8;
/// DMA request type alias. (also known as DMA channel number in some chips)
#[cfg(not(any(dma_v2, bdma_v2, gpdma, dmamux)))]
pub type Request = ();
pub(crate) mod sealed {
pub trait Channel {
fn id(&self) -> u8;
}
pub trait ChannelInterrupt {
unsafe fn on_irq();
}
}
/// DMA channel.
pub trait Channel: sealed::Channel + Peripheral<P = Self> + Into<AnyChannel> + 'static {
/// Type-erase (degrade) this pin into an `AnyChannel`.
///
/// This converts DMA channel singletons (`DMA1_CH3`, `DMA2_CH1`, ...), which
/// are all different types, into the same type. It is useful for
/// creating arrays of channels, or avoiding generics.
#[inline]
fn degrade(self) -> AnyChannel {
AnyChannel { id: self.id() }
}
}
macro_rules! dma_channel_impl {
($channel_peri:ident, $index:expr) => {
impl crate::dma::sealed::Channel for crate::peripherals::$channel_peri {
fn id(&self) -> u8 {
$index
}
}
impl crate::dma::sealed::ChannelInterrupt for crate::peripherals::$channel_peri {
unsafe fn on_irq() {
crate::dma::AnyChannel { id: $index }.on_irq();
}
}
impl crate::dma::Channel for crate::peripherals::$channel_peri {}
impl From<crate::peripherals::$channel_peri> for crate::dma::AnyChannel {
fn from(x: crate::peripherals::$channel_peri) -> Self {
crate::dma::Channel::degrade(x)
}
}
};
}
/// Type-erased DMA channel.
pub struct AnyChannel {
pub(crate) id: u8,
}
impl_peripheral!(AnyChannel);
impl AnyChannel {
fn info(&self) -> &ChannelInfo {
&crate::_generated::DMA_CHANNELS[self.id as usize]
}
}
const CHANNEL_COUNT: usize = crate::_generated::DMA_CHANNELS.len();
static STATE: [ChannelState; CHANNEL_COUNT] = [ChannelState::NEW; CHANNEL_COUNT];
/// "No DMA" placeholder.
///
/// You may pass this in place of a real DMA channel when creating a driver
@ -70,10 +128,14 @@ pub(crate) unsafe fn init(
#[cfg(dma)] dma_priority: Priority,
#[cfg(gpdma)] gpdma_priority: Priority,
) {
#[cfg(bdma)]
bdma::init(cs, bdma_priority);
#[cfg(any(dma, bdma))]
dma_bdma::init(
cs,
#[cfg(dma)]
dma::init(cs, dma_priority);
dma_priority,
#[cfg(bdma)]
bdma_priority,
);
#[cfg(gpdma)]
gpdma::init(cs, gpdma_priority);
#[cfg(dmamux)]

View File

@ -501,9 +501,9 @@ impl Config {
}
}
enum RingBuffer<'d, C: Channel, W: word::Word> {
Writable(WritableRingBuffer<'d, C, W>),
Readable(ReadableRingBuffer<'d, C, W>),
enum RingBuffer<'d, W: word::Word> {
Writable(WritableRingBuffer<'d, W>),
Readable(ReadableRingBuffer<'d, W>),
}
#[cfg(any(sai_v1, sai_v2, sai_v3, sai_v4))]
@ -528,13 +528,13 @@ fn get_af_types(mode: Mode, tx_rx: TxRx) -> (AFType, AFType) {
)
}
fn get_ring_buffer<'d, T: Instance, C: Channel, W: word::Word>(
dma: impl Peripheral<P = C> + 'd,
fn get_ring_buffer<'d, T: Instance, W: word::Word>(
dma: impl Peripheral<P = impl Channel> + 'd,
dma_buf: &'d mut [W],
request: Request,
sub_block: WhichSubBlock,
tx_rx: TxRx,
) -> RingBuffer<'d, C, W> {
) -> RingBuffer<'d, W> {
let opts = TransferOptions {
half_transfer_ir: true,
//the new_write() and new_read() always use circular mode
@ -593,17 +593,17 @@ pub fn split_subblocks<'d, T: Instance>(peri: impl Peripheral<P = T> + 'd) -> (S
}
/// SAI sub-block driver.
pub struct Sai<'d, T: Instance, C: Channel, W: word::Word> {
pub struct Sai<'d, T: Instance, W: word::Word> {
_peri: PeripheralRef<'d, T>,
sd: Option<PeripheralRef<'d, AnyPin>>,
fs: Option<PeripheralRef<'d, AnyPin>>,
sck: Option<PeripheralRef<'d, AnyPin>>,
mclk: Option<PeripheralRef<'d, AnyPin>>,
ring_buffer: RingBuffer<'d, C, W>,
ring_buffer: RingBuffer<'d, W>,
sub_block: WhichSubBlock,
}
impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
impl<'d, T: Instance, W: word::Word> Sai<'d, T, W> {
/// Create a new SAI driver in asynchronous mode with MCLK.
///
/// You can obtain the [`SubBlock`] with [`split_subblocks`].
@ -613,13 +613,10 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
sd: impl Peripheral<P = impl SdPin<T, S>> + 'd,
fs: impl Peripheral<P = impl FsPin<T, S>> + 'd,
mclk: impl Peripheral<P = impl MclkPin<T, S>> + 'd,
dma: impl Peripheral<P = C> + 'd,
dma: impl Peripheral<P = impl Channel + Dma<T, S>> + 'd,
dma_buf: &'d mut [W],
mut config: Config,
) -> Self
where
C: Channel + Dma<T, S>,
{
) -> Self {
into_ref!(mclk);
let (_sd_af_type, ck_af_type) = get_af_types(config.mode, config.tx_rx);
@ -642,13 +639,10 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
sck: impl Peripheral<P = impl SckPin<T, S>> + 'd,
sd: impl Peripheral<P = impl SdPin<T, S>> + 'd,
fs: impl Peripheral<P = impl FsPin<T, S>> + 'd,
dma: impl Peripheral<P = C> + 'd,
dma: impl Peripheral<P = impl Channel + Dma<T, S>> + 'd,
dma_buf: &'d mut [W],
config: Config,
) -> Self
where
C: Channel + Dma<T, S>,
{
) -> Self {
let peri = peri.peri;
into_ref!(peri, dma, sck, sd, fs);
@ -671,7 +665,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
None,
Some(sd.map_into()),
Some(fs.map_into()),
get_ring_buffer::<T, C, W>(dma, dma_buf, request, sub_block, config.tx_rx),
get_ring_buffer::<T, W>(dma, dma_buf, request, sub_block, config.tx_rx),
config,
)
}
@ -682,13 +676,10 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
pub fn new_synchronous<S: SubBlockInstance>(
peri: SubBlock<'d, T, S>,
sd: impl Peripheral<P = impl SdPin<T, S>> + 'd,
dma: impl Peripheral<P = C> + 'd,
dma: impl Peripheral<P = impl Channel + Dma<T, S>> + 'd,
dma_buf: &'d mut [W],
mut config: Config,
) -> Self
where
C: Channel + Dma<T, S>,
{
) -> Self {
update_synchronous_config(&mut config);
let peri = peri.peri;
@ -709,7 +700,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
None,
Some(sd.map_into()),
None,
get_ring_buffer::<T, C, W>(dma, dma_buf, request, sub_block, config.tx_rx),
get_ring_buffer::<T, W>(dma, dma_buf, request, sub_block, config.tx_rx),
config,
)
}
@ -721,7 +712,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
mclk: Option<PeripheralRef<'d, AnyPin>>,
sd: Option<PeripheralRef<'d, AnyPin>>,
fs: Option<PeripheralRef<'d, AnyPin>>,
ring_buffer: RingBuffer<'d, C, W>,
ring_buffer: RingBuffer<'d, W>,
config: Config,
) -> Self {
#[cfg(any(sai_v1, sai_v2, sai_v3, sai_v4))]
@ -830,7 +821,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
}
}
fn is_transmitter(ring_buffer: &RingBuffer<C, W>) -> bool {
fn is_transmitter(ring_buffer: &RingBuffer<W>) -> bool {
match ring_buffer {
RingBuffer::Writable(_) => true,
_ => false,
@ -889,7 +880,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> Sai<'d, T, C, W> {
}
}
impl<'d, T: Instance, C: Channel, W: word::Word> Drop for Sai<'d, T, C, W> {
impl<'d, T: Instance, W: word::Word> Drop for Sai<'d, T, W> {
fn drop(&mut self) {
let ch = T::REGS.ch(self.sub_block as usize);
ch.cr1().modify(|w| w.set_saien(false));

View File

@ -228,10 +228,10 @@ fn clk_div(ker_ck: Hertz, sdmmc_ck: u32) -> Result<(bool, u16, Hertz), Error> {
}
#[cfg(sdmmc_v1)]
type Transfer<'a, C> = crate::dma::Transfer<'a, C>;
type Transfer<'a> = crate::dma::Transfer<'a>;
#[cfg(sdmmc_v2)]
struct Transfer<'a, C> {
_dummy: core::marker::PhantomData<&'a mut C>,
struct Transfer<'a> {
_dummy: PhantomData<&'a ()>,
}
#[cfg(all(sdmmc_v1, dma))]
@ -548,7 +548,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
buffer: &'a mut [u32],
length_bytes: u32,
block_size: u8,
) -> Transfer<'a, Dma> {
) -> Transfer<'a> {
assert!(block_size <= 14, "Block size up to 2^14 bytes");
let regs = T::regs();
@ -596,12 +596,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
/// # Safety
///
/// `buffer` must be valid for the whole transfer and word aligned
fn prepare_datapath_write<'a>(
&'a mut self,
buffer: &'a [u32],
length_bytes: u32,
block_size: u8,
) -> Transfer<'a, Dma> {
fn prepare_datapath_write<'a>(&'a mut self, buffer: &'a [u32], length_bytes: u32, block_size: u8) -> Transfer<'a> {
assert!(block_size <= 14, "Block size up to 2^14 bytes");
let regs = T::regs();

View File

@ -7,19 +7,19 @@ use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::PeripheralRef;
use futures::future::{select, Either};
use super::{clear_interrupt_flags, rdr, reconfigure, sr, BasicInstance, Config, ConfigError, Error, RxDma, UartRx};
use super::{clear_interrupt_flags, rdr, reconfigure, sr, BasicInstance, Config, ConfigError, Error, UartRx};
use crate::dma::ReadableRingBuffer;
use crate::usart::{Regs, Sr};
/// Rx-only Ring-buffered UART Driver
///
/// Created with [UartRx::into_ring_buffered]
pub struct RingBufferedUartRx<'d, T: BasicInstance, RxDma: super::RxDma<T>> {
pub struct RingBufferedUartRx<'d, T: BasicInstance> {
_peri: PeripheralRef<'d, T>,
ring_buf: ReadableRingBuffer<'d, RxDma, u8>,
ring_buf: ReadableRingBuffer<'d, u8>,
}
impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> SetConfig for RingBufferedUartRx<'d, T, RxDma> {
impl<'d, T: BasicInstance> SetConfig for RingBufferedUartRx<'d, T> {
type Config = Config;
type ConfigError = ConfigError;
@ -32,7 +32,7 @@ impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> UartRx<'d, T, RxDma> {
/// Turn the `UartRx` into a buffered uart which can continously receive in the background
/// without the possibility of losing bytes. The `dma_buf` is a buffer registered to the
/// DMA controller, and must be large enough to prevent overflows.
pub fn into_ring_buffered(self, dma_buf: &'d mut [u8]) -> RingBufferedUartRx<'d, T, RxDma> {
pub fn into_ring_buffered(self, dma_buf: &'d mut [u8]) -> RingBufferedUartRx<'d, T> {
assert!(!dma_buf.is_empty() && dma_buf.len() <= 0xFFFF);
let request = self.rx_dma.request();
@ -51,7 +51,7 @@ impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> UartRx<'d, T, RxDma> {
}
}
impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> RingBufferedUartRx<'d, T, RxDma> {
impl<'d, T: BasicInstance> RingBufferedUartRx<'d, T> {
/// Clear the ring buffer and start receiving in the background
pub fn start(&mut self) -> Result<(), Error> {
// Clear the ring buffer so that it is ready to receive data
@ -208,7 +208,7 @@ impl<'d, T: BasicInstance, RxDma: super::RxDma<T>> RingBufferedUartRx<'d, T, RxD
}
}
impl<T: BasicInstance, RxDma: super::RxDma<T>> Drop for RingBufferedUartRx<'_, T, RxDma> {
impl<T: BasicInstance> Drop for RingBufferedUartRx<'_, T> {
fn drop(&mut self) {
self.teardown_uart();
@ -245,18 +245,16 @@ fn clear_idle_flag(r: Regs) -> Sr {
sr
}
impl<T, Rx> embedded_io_async::ErrorType for RingBufferedUartRx<'_, T, Rx>
impl<T> embedded_io_async::ErrorType for RingBufferedUartRx<'_, T>
where
T: BasicInstance,
Rx: RxDma<T>,
{
type Error = Error;
}
impl<T, Rx> embedded_io_async::Read for RingBufferedUartRx<'_, T, Rx>
impl<T> embedded_io_async::Read for RingBufferedUartRx<'_, T>
where
T: BasicInstance,
Rx: RxDma<T>,
{
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
self.read(buf).await

View File

@ -74,7 +74,7 @@ async fn transmit_task(mut tx: UartTx<'static, peris::UART, peris::UART_TX_DMA>)
}
#[embassy_executor::task]
async fn receive_task(mut rx: RingBufferedUartRx<'static, peris::UART, peris::UART_RX_DMA>) {
async fn receive_task(mut rx: RingBufferedUartRx<'static, peris::UART>) {
info!("Ready to receive...");
let mut rng = ChaCha8Rng::seed_from_u64(1337);