feat(usb): add support for ISO endpoints

This commit is contained in:
elagil 2024-09-05 21:29:04 +02:00
parent b8fa5cdf06
commit ccf68d7391

View File

@ -80,6 +80,8 @@ impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandl
if istr.ctr() { if istr.ctr() {
let index = istr.ep_id() as usize; let index = istr.ep_id() as usize;
CTR_TRIGGERED[index].store(true, Ordering::Relaxed);
let mut epr = regs.epr(index).read(); let mut epr = regs.epr(index).read();
if epr.ctr_rx() { if epr.ctr_rx() {
if index == 0 && epr.setup() { if index == 0 && epr.setup() {
@ -120,6 +122,10 @@ const USBRAM_ALIGN: usize = 4;
const NEW_AW: AtomicWaker = AtomicWaker::new(); const NEW_AW: AtomicWaker = AtomicWaker::new();
static BUS_WAKER: AtomicWaker = NEW_AW; static BUS_WAKER: AtomicWaker = NEW_AW;
static EP0_SETUP: AtomicBool = AtomicBool::new(false); static EP0_SETUP: AtomicBool = AtomicBool::new(false);
const NEW_CTR_TRIGGERED: AtomicBool = AtomicBool::new(false);
static CTR_TRIGGERED: [AtomicBool; EP_COUNT] = [NEW_CTR_TRIGGERED; EP_COUNT];
static EP_IN_WAKERS: [AtomicWaker; EP_COUNT] = [NEW_AW; EP_COUNT]; static EP_IN_WAKERS: [AtomicWaker; EP_COUNT] = [NEW_AW; EP_COUNT];
static EP_OUT_WAKERS: [AtomicWaker; EP_COUNT] = [NEW_AW; EP_COUNT]; static EP_OUT_WAKERS: [AtomicWaker; EP_COUNT] = [NEW_AW; EP_COUNT];
static IRQ_RESET: AtomicBool = AtomicBool::new(false); static IRQ_RESET: AtomicBool = AtomicBool::new(false);
@ -163,20 +169,37 @@ fn calc_out_len(len: u16) -> (u16, u16) {
mod btable { mod btable {
use super::*; use super::*;
pub(super) fn write_in<T: Instance>(index: usize, addr: u16) { pub(super) fn write_in_tx<T: Instance>(index: usize, addr: u16) {
USBRAM.mem(index * 4 + 0).write_value(addr); USBRAM.mem(index * 4 + 0).write_value(addr);
} }
pub(super) fn write_in_len<T: Instance>(index: usize, _addr: u16, len: u16) { pub(super) fn write_in_rx<T: Instance>(index: usize, addr: u16) {
USBRAM.mem(index * 4 + 2).write_value(addr);
}
pub(super) fn write_in_len_rx<T: Instance>(index: usize, _addr: u16, len: u16) {
USBRAM.mem(index * 4 + 3).write_value(len);
}
pub(super) fn write_in_len_tx<T: Instance>(index: usize, _addr: u16, len: u16) {
USBRAM.mem(index * 4 + 1).write_value(len); USBRAM.mem(index * 4 + 1).write_value(len);
} }
pub(super) fn write_out<T: Instance>(index: usize, addr: u16, max_len_bits: u16) { pub(super) fn write_out_rx<T: Instance>(index: usize, addr: u16, max_len_bits: u16) {
USBRAM.mem(index * 4 + 2).write_value(addr); USBRAM.mem(index * 4 + 2).write_value(addr);
USBRAM.mem(index * 4 + 3).write_value(max_len_bits); USBRAM.mem(index * 4 + 3).write_value(max_len_bits);
} }
pub(super) fn read_out_len<T: Instance>(index: usize) -> u16 { pub(super) fn write_out_tx<T: Instance>(index: usize, addr: u16, max_len_bits: u16) {
USBRAM.mem(index * 4 + 0).write_value(addr);
USBRAM.mem(index * 4 + 1).write_value(max_len_bits);
}
pub(super) fn read_out_len_tx<T: Instance>(index: usize) -> u16 {
USBRAM.mem(index * 4 + 1).read()
}
pub(super) fn read_out_len_rx<T: Instance>(index: usize) -> u16 {
USBRAM.mem(index * 4 + 3).read() USBRAM.mem(index * 4 + 3).read()
} }
} }
@ -184,19 +207,37 @@ mod btable {
mod btable { mod btable {
use super::*; use super::*;
pub(super) fn write_in<T: Instance>(_index: usize, _addr: u16) {} pub(super) fn write_in_tx<T: Instance>(_index: usize, _addr: u16) {}
pub(super) fn write_in_len<T: Instance>(index: usize, addr: u16, len: u16) { pub(super) fn write_in_rx<T: Instance>(_index: usize, _addr: u16) {}
pub(super) fn write_in_len_tx<T: Instance>(index: usize, addr: u16, len: u16) {
USBRAM.mem(index * 2).write_value((addr as u32) | ((len as u32) << 16)); USBRAM.mem(index * 2).write_value((addr as u32) | ((len as u32) << 16));
} }
pub(super) fn write_out<T: Instance>(index: usize, addr: u16, max_len_bits: u16) { pub(super) fn write_in_len_rx<T: Instance>(index: usize, addr: u16, len: u16) {
USBRAM
.mem(index * 2 + 1)
.write_value((addr as u32) | ((len as u32) << 16));
}
pub(super) fn write_out_tx<T: Instance>(index: usize, addr: u16, max_len_bits: u16) {
USBRAM
.mem(index * 2)
.write_value((addr as u32) | ((max_len_bits as u32) << 16));
}
pub(super) fn write_out_rx<T: Instance>(index: usize, addr: u16, max_len_bits: u16) {
USBRAM USBRAM
.mem(index * 2 + 1) .mem(index * 2 + 1)
.write_value((addr as u32) | ((max_len_bits as u32) << 16)); .write_value((addr as u32) | ((max_len_bits as u32) << 16));
} }
pub(super) fn read_out_len<T: Instance>(index: usize) -> u16 { pub(super) fn read_out_len_tx<T: Instance>(index: usize) -> u16 {
(USBRAM.mem(index * 2).read() >> 16) as u16
}
pub(super) fn read_out_len_rx<T: Instance>(index: usize) -> u16 {
(USBRAM.mem(index * 2 + 1).read() >> 16) as u16 (USBRAM.mem(index * 2 + 1).read() >> 16) as u16
} }
} }
@ -327,6 +368,13 @@ impl<'d, T: Instance> Driver<'d, T> {
return false; // reserved for control pipe return false; // reserved for control pipe
} }
let used = ep.used_out || ep.used_in; let used = ep.used_out || ep.used_in;
if used && (ep.ep_type == EndpointType::Isochronous || ep.ep_type == EndpointType::Bulk) {
// Isochronous and bulk endpoints are double-buffered.
// Their corresponding endpoint/channel registers are forced to be unidirectional.
// Do not reuse this index.
return false;
}
let used_dir = match D::dir() { let used_dir = match D::dir() {
Direction::Out => ep.used_out, Direction::Out => ep.used_out,
Direction::In => ep.used_in, Direction::In => ep.used_in,
@ -350,7 +398,11 @@ impl<'d, T: Instance> Driver<'d, T> {
let addr = self.alloc_ep_mem(len); let addr = self.alloc_ep_mem(len);
trace!(" len_bits = {:04x}", len_bits); trace!(" len_bits = {:04x}", len_bits);
btable::write_out::<T>(index, addr, len_bits); btable::write_out_rx::<T>(index, addr, len_bits);
if ep_type == EndpointType::Isochronous {
btable::write_out_tx::<T>(index, addr, len_bits);
}
EndpointBuffer { EndpointBuffer {
addr, addr,
@ -366,7 +418,11 @@ impl<'d, T: Instance> Driver<'d, T> {
let addr = self.alloc_ep_mem(len); let addr = self.alloc_ep_mem(len);
// ep_in_len is written when actually TXing packets. // ep_in_len is written when actually TXing packets.
btable::write_in::<T>(index, addr); btable::write_in_tx::<T>(index, addr);
if ep_type == EndpointType::Isochronous {
btable::write_in_rx::<T>(index, addr);
}
EndpointBuffer { EndpointBuffer {
addr, addr,
@ -656,6 +712,18 @@ impl Dir for Out {
} }
} }
/// Selects the packet buffer.
///
/// For double-buffered endpoints, both the `Rx` and `Tx` buffer from a channel are used for the same
/// direction of transfer. This is opposed to single-buffered endpoints, where one channel can serve
/// two directions at the same time.
enum PacketBuffer {
/// The RX buffer - must be used for single-buffered OUT endpoints
Rx,
/// The TX buffer - must be used for single-buffered IN endpoints
Tx,
}
/// USB endpoint. /// USB endpoint.
pub struct Endpoint<'d, T: Instance, D> { pub struct Endpoint<'d, T: Instance, D> {
_phantom: PhantomData<(&'d mut T, D)>, _phantom: PhantomData<(&'d mut T, D)>,
@ -664,15 +732,46 @@ pub struct Endpoint<'d, T: Instance, D> {
} }
impl<'d, T: Instance, D> Endpoint<'d, T, D> { impl<'d, T: Instance, D> Endpoint<'d, T, D> {
fn write_data(&mut self, buf: &[u8]) { /// Write to a double-buffered endpoint.
///
/// For double-buffered endpoints, the data buffers overlap, but we still need to write to the right counter field.
/// The DTOG_TX bit indicates the buffer that is currently in use by the USB peripheral, that is, the buffer in
/// which the next transmit packet will be stored, so we need to write the counter of the OTHER buffer, which is
/// where the last transmitted packet was stored.
fn write_data_double_buffered(&mut self, buf: &[u8], packet_buffer: PacketBuffer) {
let index = self.info.addr.index(); let index = self.info.addr.index();
self.buf.write(buf); self.buf.write(buf);
btable::write_in_len::<T>(index, self.buf.addr, buf.len() as _);
match packet_buffer {
PacketBuffer::Rx => btable::write_in_len_rx::<T>(index, self.buf.addr, buf.len() as _),
PacketBuffer::Tx => btable::write_in_len_tx::<T>(index, self.buf.addr, buf.len() as _),
}
} }
fn read_data(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> { /// Write to a single-buffered endpoint.
fn write_data(&mut self, buf: &[u8]) {
self.write_data_double_buffered(buf, PacketBuffer::Tx);
}
/// Read from a double-buffered endpoint.
///
/// For double-buffered endpoints, the data buffers overlap, but we still need to read from the right counter field.
/// The DTOG_RX bit indicates the buffer that is currently in use by the USB peripheral, that is, the buffer in
/// which the next received packet will be stored, so we need to read the counter of the OTHER buffer, which is
/// where the last received packet was stored.
fn read_data_double_buffered(
&mut self,
buf: &mut [u8],
packet_buffer: PacketBuffer,
) -> Result<usize, EndpointError> {
let index = self.info.addr.index(); let index = self.info.addr.index();
let rx_len = btable::read_out_len::<T>(index) as usize & 0x3FF;
let rx_len = match packet_buffer {
PacketBuffer::Rx => btable::read_out_len_rx::<T>(index),
PacketBuffer::Tx => btable::read_out_len_tx::<T>(index),
} as usize
& 0x3FF;
trace!("READ DONE, rx_len = {}", rx_len); trace!("READ DONE, rx_len = {}", rx_len);
if rx_len > buf.len() { if rx_len > buf.len() {
return Err(EndpointError::BufferOverflow); return Err(EndpointError::BufferOverflow);
@ -680,6 +779,11 @@ impl<'d, T: Instance, D> Endpoint<'d, T, D> {
self.buf.read(&mut buf[..rx_len]); self.buf.read(&mut buf[..rx_len]);
Ok(rx_len) Ok(rx_len)
} }
/// Read from a single-buffered endpoint.
fn read_data(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> {
self.read_data_double_buffered(buf, PacketBuffer::Rx)
}
} }
impl<'d, T: Instance> driver::Endpoint for Endpoint<'d, T, In> { impl<'d, T: Instance> driver::Endpoint for Endpoint<'d, T, In> {
@ -734,25 +838,53 @@ impl<'d, T: Instance> driver::EndpointOut for Endpoint<'d, T, Out> {
EP_OUT_WAKERS[index].register(cx.waker()); EP_OUT_WAKERS[index].register(cx.waker());
let regs = T::regs(); let regs = T::regs();
let stat = regs.epr(index).read().stat_rx(); let stat = regs.epr(index).read().stat_rx();
if matches!(stat, Stat::NAK | Stat::DISABLED) { if self.info.ep_type == EndpointType::Isochronous {
Poll::Ready(stat) // The isochronous endpoint does not change its `STAT_RX` field to `NAK` when receiving a packet.
// Therefore, this instead waits until the `CTR` interrupt was triggered.
if matches!(stat, Stat::DISABLED) || CTR_TRIGGERED[index].load(Ordering::Relaxed) {
Poll::Ready(stat)
} else {
Poll::Pending
}
} else { } else {
Poll::Pending if matches!(stat, Stat::NAK | Stat::DISABLED) {
Poll::Ready(stat)
} else {
Poll::Pending
}
} }
}) })
.await; .await;
CTR_TRIGGERED[index].store(false, Ordering::Relaxed);
if stat == Stat::DISABLED { if stat == Stat::DISABLED {
return Err(EndpointError::Disabled); return Err(EndpointError::Disabled);
} }
let rx_len = self.read_data(buf)?;
let regs = T::regs(); let regs = T::regs();
let packet_buffer = if self.info.ep_type == EndpointType::Isochronous {
// Find the buffer, which is currently in use. Read from the OTHER buffer.
if regs.epr(index).read().dtog_rx() {
PacketBuffer::Rx
} else {
PacketBuffer::Tx
}
} else {
PacketBuffer::Rx
};
let rx_len = self.read_data_double_buffered(buf, packet_buffer)?;
regs.epr(index).write(|w| { regs.epr(index).write(|w| {
w.set_ep_type(convert_type(self.info.ep_type)); w.set_ep_type(convert_type(self.info.ep_type));
w.set_ea(self.info.addr.index() as _); w.set_ea(self.info.addr.index() as _);
w.set_stat_rx(Stat::from_bits(Stat::NAK.to_bits() ^ Stat::VALID.to_bits())); if self.info.ep_type == EndpointType::Isochronous {
w.set_stat_rx(Stat::from_bits(0)); // STAT_RX remains `VALID`.
} else {
w.set_stat_rx(Stat::from_bits(Stat::NAK.to_bits() ^ Stat::VALID.to_bits()));
}
w.set_stat_tx(Stat::from_bits(0)); w.set_stat_tx(Stat::from_bits(0));
w.set_ctr_rx(true); // don't clear w.set_ctr_rx(true); // don't clear
w.set_ctr_tx(true); // don't clear w.set_ctr_tx(true); // don't clear
@ -776,25 +908,54 @@ impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> {
EP_IN_WAKERS[index].register(cx.waker()); EP_IN_WAKERS[index].register(cx.waker());
let regs = T::regs(); let regs = T::regs();
let stat = regs.epr(index).read().stat_tx(); let stat = regs.epr(index).read().stat_tx();
if matches!(stat, Stat::NAK | Stat::DISABLED) { if self.info.ep_type == EndpointType::Isochronous {
Poll::Ready(stat) // The isochronous endpoint does not change its `STAT_RX` field to `NAK` when receiving a packet.
// Therefore, this instead waits until the `CTR` interrupt was triggered.
if matches!(stat, Stat::DISABLED) || CTR_TRIGGERED[index].load(Ordering::Relaxed) {
Poll::Ready(stat)
} else {
Poll::Pending
}
} else { } else {
Poll::Pending if matches!(stat, Stat::NAK | Stat::DISABLED) {
Poll::Ready(stat)
} else {
Poll::Pending
}
} }
}) })
.await; .await;
CTR_TRIGGERED[index].store(false, Ordering::Relaxed);
if stat == Stat::DISABLED { if stat == Stat::DISABLED {
return Err(EndpointError::Disabled); return Err(EndpointError::Disabled);
} }
self.write_data(buf); let regs = T::regs();
let packet_buffer = if self.info.ep_type == EndpointType::Isochronous {
// Find the buffer, which is currently in use. Write to the OTHER buffer.
if regs.epr(index).read().dtog_tx() {
PacketBuffer::Tx
} else {
PacketBuffer::Rx
}
} else {
PacketBuffer::Tx
};
self.write_data_double_buffered(buf, packet_buffer);
let regs = T::regs(); let regs = T::regs();
regs.epr(index).write(|w| { regs.epr(index).write(|w| {
w.set_ep_type(convert_type(self.info.ep_type)); w.set_ep_type(convert_type(self.info.ep_type));
w.set_ea(self.info.addr.index() as _); w.set_ea(self.info.addr.index() as _);
w.set_stat_tx(Stat::from_bits(Stat::NAK.to_bits() ^ Stat::VALID.to_bits())); if self.info.ep_type == EndpointType::Isochronous {
w.set_stat_tx(Stat::from_bits(0)); // STAT_TX remains `VALID`.
} else {
w.set_stat_tx(Stat::from_bits(Stat::NAK.to_bits() ^ Stat::VALID.to_bits()));
}
w.set_stat_rx(Stat::from_bits(0)); w.set_stat_rx(Stat::from_bits(0));
w.set_ctr_rx(true); // don't clear w.set_ctr_rx(true); // don't clear
w.set_ctr_tx(true); // don't clear w.set_ctr_tx(true); // don't clear