Merge pull request #2026 from embassy-rs/stm32-pac-pll-enums

stm32/rcc: use PLL enums from PAC.
This commit is contained in:
Dario Nieuwenhuis 2023-10-09 00:58:22 +00:00 committed by GitHub
commit c3ef98a73d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
47 changed files with 599 additions and 1383 deletions

View File

@ -59,12 +59,11 @@ sdio-host = "0.5.0"
embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "a4f293d3a6f72158385f79c98634cb8a14d0d2fc", optional = true }
critical-section = "1.1"
atomic-polyfill = "1.0.1"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-eecd80c34d4a3035be31404857e6c6e115376f41" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-e89b8cfc30e480036aaf502f34c874ee42d68026" }
vcell = "0.1.3"
bxcan = "0.7.0"
nb = "1.0.0"
stm32-fmc = "0.3.0"
seq-macro = "0.3.0"
cfg-if = "1.0.0"
embedded-io = { version = "0.6.0" }
embedded-io-async = { version = "0.6.0", optional = true }
@ -78,7 +77,7 @@ critical-section = { version = "1.1", features = ["std"] }
[build-dependencies]
proc-macro2 = "1.0.36"
quote = "1.0.15"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-eecd80c34d4a3035be31404857e6c6e115376f41", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-e89b8cfc30e480036aaf502f34c874ee42d68026", default-features = false, features = ["metadata"]}
[features]

View File

@ -893,6 +893,105 @@ fn main() {
}
}
// ========
// Generate Div/Mul impls for RCC prescalers/dividers/multipliers.
let rcc_registers = METADATA
.peripherals
.iter()
.filter_map(|p| p.registers.as_ref())
.find(|r| r.kind == "rcc")
.unwrap()
.ir;
for e in rcc_registers.enums {
fn is_rcc_name(e: &str) -> bool {
match e {
"Pllp" | "Pllq" | "Pllr" | "Pllm" | "Plln" => true,
"Timpre" | "Pllrclkpre" => false,
e if e.ends_with("pre") || e.ends_with("div") || e.ends_with("mul") => true,
_ => false,
}
}
#[derive(Copy, Clone, Debug)]
struct Frac {
num: u32,
denom: u32,
}
impl Frac {
fn simplify(self) -> Self {
let d = gcd(self.num, self.denom);
Self {
num: self.num / d,
denom: self.denom / d,
}
}
}
fn gcd(a: u32, b: u32) -> u32 {
if b == 0 {
return a;
}
gcd(b, a % b)
}
fn parse_num(n: &str) -> Result<Frac, ()> {
for prefix in ["DIV", "MUL"] {
if let Some(n) = n.strip_prefix(prefix) {
let exponent = n.find('_').map(|e| n.len() - 1 - e).unwrap_or(0) as u32;
let mantissa = n.replace('_', "").parse().map_err(|_| ())?;
let f = Frac {
num: mantissa,
denom: 10u32.pow(exponent),
};
return Ok(f.simplify());
}
}
Err(())
}
if is_rcc_name(e.name) {
let enum_name = format_ident!("{}", e.name);
let mut muls = Vec::new();
let mut divs = Vec::new();
for v in e.variants {
let Ok(val) = parse_num(v.name) else {
panic!("could not parse mul/div. enum={} variant={}", e.name, v.name)
};
let variant_name = format_ident!("{}", v.name);
let variant = quote!(crate::pac::rcc::vals::#enum_name::#variant_name);
let num = val.num;
let denom = val.denom;
muls.push(quote!(#variant => self * #num / #denom,));
divs.push(quote!(#variant => self * #denom / #num,));
}
g.extend(quote! {
impl core::ops::Div<crate::pac::rcc::vals::#enum_name> for crate::time::Hertz {
type Output = crate::time::Hertz;
fn div(self, rhs: crate::pac::rcc::vals::#enum_name) -> Self::Output {
match rhs {
#(#divs)*
#[allow(unreachable_patterns)]
_ => unreachable!(),
}
}
}
impl core::ops::Mul<crate::pac::rcc::vals::#enum_name> for crate::time::Hertz {
type Output = crate::time::Hertz;
fn mul(self, rhs: crate::pac::rcc::vals::#enum_name) -> Self::Output {
match rhs {
#(#muls)*
#[allow(unreachable_patterns)]
_ => unreachable!(),
}
}
}
});
}
}
// ========
// Write foreach_foo! macrotables

View File

@ -1,56 +0,0 @@
use core::ops::Div;
#[allow(unused_imports)]
use crate::pac::rcc;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
use crate::time::Hertz;
impl Div<AHBPrescaler> for Hertz {
type Output = Hertz;
fn div(self, rhs: AHBPrescaler) -> Self::Output {
let divisor = match rhs {
AHBPrescaler::DIV1 => 1,
AHBPrescaler::DIV2 => 2,
#[cfg(any(rcc_wb, rcc_wl5, rcc_wle))]
AHBPrescaler::DIV3 => 3,
AHBPrescaler::DIV4 => 4,
#[cfg(any(rcc_wb, rcc_wl5, rcc_wle))]
AHBPrescaler::DIV5 => 5,
#[cfg(any(rcc_wb, rcc_wl5, rcc_wle))]
AHBPrescaler::DIV6 => 6,
AHBPrescaler::DIV8 => 8,
#[cfg(any(rcc_wb, rcc_wl5, rcc_wle))]
AHBPrescaler::DIV10 => 10,
AHBPrescaler::DIV16 => 16,
#[cfg(any(rcc_wb, rcc_wl5, rcc_wle))]
AHBPrescaler::DIV32 => 32,
#[cfg(not(rcc_wba))]
AHBPrescaler::DIV64 => 64,
#[cfg(not(rcc_wba))]
AHBPrescaler::DIV128 => 128,
#[cfg(not(rcc_wba))]
AHBPrescaler::DIV256 => 256,
#[cfg(not(rcc_wba))]
AHBPrescaler::DIV512 => 512,
_ => unreachable!(),
};
Hertz(self.0 / divisor)
}
}
impl Div<APBPrescaler> for Hertz {
type Output = Hertz;
fn div(self, rhs: APBPrescaler) -> Self::Output {
let divisor = match rhs {
APBPrescaler::DIV1 => 1,
APBPrescaler::DIV2 => 2,
APBPrescaler::DIV4 => 4,
APBPrescaler::DIV8 => 8,
APBPrescaler::DIV16 => 16,
_ => unreachable!(),
};
Hertz(self.0 / divisor)
}
}

View File

@ -1,5 +1,5 @@
pub use super::bus::{AHBPrescaler, APBPrescaler};
use crate::pac::flash::vals::Latency;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
use crate::pac::rcc::vals::{Hsidiv, Ppre, Sw};
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};

View File

@ -1,9 +1,9 @@
use core::convert::TryFrom;
use core::ops::{Div, Mul};
pub use super::bus::{AHBPrescaler, APBPrescaler};
use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::{Pllp, Pllsrc, Sw};
use crate::pac::rcc::vals::Sw;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Pllm as PLLPreDiv, Plln as PLLMul, Pllp as PLLPDiv, Pllq as PLLQDiv, Pllsrc as PLLSrc,
Ppre as APBPrescaler,
};
use crate::pac::{FLASH, RCC};
use crate::rcc::bd::BackupDomain;
use crate::rcc::{set_freqs, Clocks};
@ -43,17 +43,17 @@ pub enum HSESrc {
pub struct PLLConfig {
pub pre_div: PLLPreDiv,
pub mul: PLLMul,
pub main_div: PLLMainDiv,
pub pll48_div: PLL48Div,
pub p_div: PLLPDiv,
pub q_div: PLLQDiv,
}
impl Default for PLLConfig {
fn default() -> Self {
PLLConfig {
pre_div: PLLPreDiv(16),
mul: PLLMul(192),
main_div: PLLMainDiv::Div2,
pll48_div: PLL48Div(4),
pre_div: PLLPreDiv::DIV16,
mul: PLLMul::MUL192,
p_div: PLLPDiv::DIV2,
q_div: PLLQDiv::DIV4,
}
}
}
@ -61,9 +61,9 @@ impl Default for PLLConfig {
impl PLLConfig {
pub fn clocks(&self, src_freq: Hertz) -> PLLClocks {
let in_freq = src_freq / self.pre_div;
let vco_freq = Hertz((src_freq.0 as u64 * self.mul.0 as u64 / self.pre_div.0 as u64) as u32);
let main_freq = vco_freq / self.main_div;
let pll48_freq = vco_freq / self.pll48_div;
let vco_freq = src_freq / self.pre_div * self.mul;
let main_freq = vco_freq / self.p_div;
let pll48_freq = vco_freq / self.q_div;
PLLClocks {
in_freq,
vco_freq,
@ -72,129 +72,6 @@ impl PLLConfig {
}
}
}
/// Clock source for both main PLL and PLLI2S
#[derive(Clone, Copy, PartialEq)]
pub enum PLLSrc {
HSE,
HSI,
}
impl Into<Pllsrc> for PLLSrc {
fn into(self) -> Pllsrc {
match self {
PLLSrc::HSE => Pllsrc::HSE,
PLLSrc::HSI => Pllsrc::HSI,
}
}
}
/// Division factor for both main PLL and PLLI2S
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct PLLPreDiv(u8);
impl TryFrom<u8> for PLLPreDiv {
type Error = &'static str;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
2..=63 => Ok(PLLPreDiv(value)),
_ => Err("PLLPreDiv must be within range 2..=63"),
}
}
}
impl Div<PLLPreDiv> for Hertz {
type Output = Hertz;
fn div(self, rhs: PLLPreDiv) -> Self::Output {
Hertz(self.0 / u32::from(rhs.0))
}
}
/// Multiplication factor for main PLL
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct PLLMul(u16);
impl Mul<PLLMul> for Hertz {
type Output = Hertz;
fn mul(self, rhs: PLLMul) -> Self::Output {
Hertz(self.0 * u32::from(rhs.0))
}
}
impl TryFrom<u16> for PLLMul {
type Error = &'static str;
fn try_from(value: u16) -> Result<Self, Self::Error> {
match value {
192..=432 => Ok(PLLMul(value)),
_ => Err("PLLMul must be within range 192..=432"),
}
}
}
/// PLL division factor for the main system clock
#[derive(Clone, Copy, PartialEq)]
pub enum PLLMainDiv {
Div2,
Div4,
Div6,
Div8,
}
impl Into<Pllp> for PLLMainDiv {
fn into(self) -> Pllp {
match self {
PLLMainDiv::Div2 => Pllp::DIV2,
PLLMainDiv::Div4 => Pllp::DIV4,
PLLMainDiv::Div6 => Pllp::DIV6,
PLLMainDiv::Div8 => Pllp::DIV8,
}
}
}
impl Div<PLLMainDiv> for Hertz {
type Output = Hertz;
fn div(self, rhs: PLLMainDiv) -> Self::Output {
let divisor = match rhs {
PLLMainDiv::Div2 => 2,
PLLMainDiv::Div4 => 4,
PLLMainDiv::Div6 => 6,
PLLMainDiv::Div8 => 8,
};
Hertz(self.0 / divisor)
}
}
/// PLL division factor for USB OTG FS / SDIO / RNG
#[derive(Clone, Copy, PartialEq)]
#[repr(transparent)]
pub struct PLL48Div(u8);
impl Div<PLL48Div> for Hertz {
type Output = Hertz;
fn div(self, rhs: PLL48Div) -> Self::Output {
Hertz(self.0 / u32::from(rhs.0))
}
}
impl TryFrom<u8> for PLL48Div {
type Error = &'static str;
fn try_from(value: u8) -> Result<Self, Self::Error> {
match value {
2..=15 => Ok(PLL48Div(value)),
_ => Err("PLL48Div must be within range 2..=15"),
}
}
}
#[derive(Clone, Copy, PartialEq)]
pub struct PLLClocks {
pub in_freq: Hertz,
@ -367,11 +244,11 @@ pub(crate) unsafe fn init(config: Config) {
assert!(pll_clocks.pll48_freq <= Hertz(48_000_000));
RCC.pllcfgr().write(|w| {
w.set_pllsrc(config.pll_mux.into());
w.set_pllm(config.pll.pre_div.0);
w.set_plln(config.pll.mul.0);
w.set_pllp(config.pll.main_div.into());
w.set_pllq(config.pll.pll48_div.0);
w.set_pllsrc(config.pll_mux);
w.set_pllm(config.pll.pre_div);
w.set_plln(config.pll.mul);
w.set_pllp(config.pll.p_div);
w.set_pllq(config.pll.q_div);
});
let (sys_clk, sw) = match config.mux {

View File

@ -1,3 +1,5 @@
use stm32_metapac::rcc::vals::{Pllm, Plln, Pllq, Pllr};
use crate::pac::rcc::vals::{Hpre, Ppre, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::bd::{BackupDomain, RtcClockSource};
@ -170,12 +172,12 @@ fn setup_pll(
let real_pll48clk = vco_in * plln / pllq;
RCC.pllcfgr().modify(|w| {
w.set_pllm(pllm as u8);
w.set_plln(plln as u16);
w.set_pllm(Pllm::from_bits(pllm as u8));
w.set_plln(Plln::from_bits(plln as u16));
w.set_pllp(Pllp::from_bits(pllp as u8));
w.set_pllq(pllq as u8);
w.set_pllq(Pllq::from_bits(pllq as u8));
w.set_pllsrc(Pllsrc::from_bits(use_hse as u8));
w.set_pllr(0);
w.set_pllr(Pllr::from_bits(0));
});
let real_pllsysclk = vco_in * plln / sysclk_div;

View File

@ -1,5 +1,5 @@
use crate::pac::pwr::vals::Vos;
use crate::pac::rcc::vals::{Hpre, Ppre, Sw};
use crate::pac::rcc::vals::{Hpre, Pllm, Plln, Pllp, Pllq, Pllsrc, Ppre, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::bd::{BackupDomain, RtcClockSource};
use crate::rcc::{set_freqs, Clocks};
@ -29,8 +29,6 @@ pub struct Config {
}
fn setup_pll(pllsrcclk: u32, use_hse: bool, pllsysclk: Option<u32>, pll48clk: bool) -> PllResults {
use crate::pac::rcc::vals::{Pllp, Pllsrc};
let sysclk = pllsysclk.unwrap_or(pllsrcclk);
if pllsysclk.is_none() && !pll48clk {
RCC.pllcfgr().modify(|w| w.set_pllsrc(Pllsrc::from_bits(use_hse as u8)));
@ -84,10 +82,10 @@ fn setup_pll(pllsrcclk: u32, use_hse: bool, pllsysclk: Option<u32>, pll48clk: bo
let real_pll48clk = vco_in * plln / pllq;
RCC.pllcfgr().modify(|w| {
w.set_pllm(pllm as u8);
w.set_plln(plln as u16);
w.set_pllm(Pllm::from_bits(pllm as u8));
w.set_plln(Plln::from_bits(plln as u16));
w.set_pllp(Pllp::from_bits(pllp as u8));
w.set_pllq(pllq as u8);
w.set_pllq(Pllq::from_bits(pllq as u8));
w.set_pllsrc(Pllsrc::from_bits(use_hse as u8));
});

View File

@ -1,6 +1,6 @@
pub use super::bus::{AHBPrescaler, APBPrescaler};
use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::{self, Hsidiv, Ppre, Sw};
use crate::pac::rcc::vals::{self, Hsidiv, Sw};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Pllm, Plln, Pllp, Pllq, Pllr, Ppre as APBPrescaler};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
@ -60,15 +60,15 @@ pub struct PllConfig {
/// The initial divisor of that clock signal
pub m: Pllm,
/// The PLL VCO multiplier, which must be in the range `8..=86`.
pub n: u8,
pub n: Plln,
/// The final divisor for `PLLRCLK` output which drives the system clock
pub r: Pllr,
/// The divisor for the `PLLQCLK` output, if desired
pub q: Option<Pllr>,
pub q: Option<Pllq>,
/// The divisor for the `PLLPCLK` output, if desired
pub p: Option<Pllr>,
pub p: Option<Pllp>,
}
impl Default for PllConfig {
@ -77,9 +77,9 @@ impl Default for PllConfig {
// HSI16 / 1 * 8 / 2 = 64 MHz
PllConfig {
source: PllSrc::HSI16,
m: Pllm::Div1,
n: 8,
r: Pllr::Div2,
m: Pllm::DIV1,
n: Plln::MUL8,
r: Pllr::DIV2,
q: None,
p: None,
}
@ -92,87 +92,6 @@ pub enum PllSrc {
HSE(Hertz),
}
#[derive(Clone, Copy)]
pub enum Pllm {
Div1,
Div2,
Div3,
Div4,
Div5,
Div6,
Div7,
Div8,
}
impl From<Pllm> for u8 {
fn from(v: Pllm) -> Self {
match v {
Pllm::Div1 => 0b000,
Pllm::Div2 => 0b001,
Pllm::Div3 => 0b010,
Pllm::Div4 => 0b011,
Pllm::Div5 => 0b100,
Pllm::Div6 => 0b101,
Pllm::Div7 => 0b110,
Pllm::Div8 => 0b111,
}
}
}
impl From<Pllm> for u32 {
fn from(v: Pllm) -> Self {
match v {
Pllm::Div1 => 1,
Pllm::Div2 => 2,
Pllm::Div3 => 3,
Pllm::Div4 => 4,
Pllm::Div5 => 5,
Pllm::Div6 => 6,
Pllm::Div7 => 7,
Pllm::Div8 => 8,
}
}
}
#[derive(Clone, Copy)]
pub enum Pllr {
Div2,
Div3,
Div4,
Div5,
Div6,
Div7,
Div8,
}
impl From<Pllr> for u8 {
fn from(v: Pllr) -> Self {
match v {
Pllr::Div2 => 0b000,
Pllr::Div3 => 0b001,
Pllr::Div4 => 0b010,
Pllr::Div5 => 0b011,
Pllr::Div6 => 0b101,
Pllr::Div7 => 0b110,
Pllr::Div8 => 0b111,
}
}
}
impl From<Pllr> for u32 {
fn from(v: Pllr) -> Self {
match v {
Pllr::Div2 => 2,
Pllr::Div3 => 3,
Pllr::Div4 => 4,
Pllr::Div5 => 5,
Pllr::Div6 => 6,
Pllr::Div7 => 7,
Pllr::Div8 => 8,
}
}
}
/// Clocks configutation
pub struct Config {
pub mux: ClockSrc,
@ -194,29 +113,28 @@ impl Default for Config {
}
impl PllConfig {
pub(crate) fn init(self) -> u32 {
assert!(self.n >= 8 && self.n <= 86);
pub(crate) fn init(self) -> Hertz {
let (src, input_freq) = match self.source {
PllSrc::HSI16 => (vals::Pllsrc::HSI16, HSI_FREQ.0),
PllSrc::HSE(freq) => (vals::Pllsrc::HSE, freq.0),
PllSrc::HSI16 => (vals::Pllsrc::HSI16, HSI_FREQ),
PllSrc::HSE(freq) => (vals::Pllsrc::HSE, freq),
};
let m_freq = input_freq / u32::from(self.m);
let m_freq = input_freq / self.m;
// RM0454 § 5.4.4:
// > Caution: The software must set these bits so that the PLL input frequency after the
// > /M divider is between 2.66 and 16 MHz.
debug_assert!(m_freq >= 2_660_000 && m_freq <= 16_000_000);
debug_assert!(m_freq.0 >= 2_660_000 && m_freq.0 <= 16_000_000);
let n_freq = m_freq * self.n as u32;
// RM0454 § 5.4.4:
// > Caution: The software must set these bits so that the VCO output frequency is between
// > 64 and 344 MHz.
debug_assert!(n_freq >= 64_000_000 && n_freq <= 344_000_000);
debug_assert!(n_freq.0 >= 64_000_000 && n_freq.0 <= 344_000_000);
let r_freq = n_freq / u32::from(self.r);
let r_freq = n_freq / self.r;
// RM0454 § 5.4.4:
// > Caution: The software must set this bitfield so as not to exceed 64 MHz on this clock.
debug_assert!(r_freq <= 64_000_000);
debug_assert!(r_freq.0 <= 64_000_000);
// RM0454 § 5.2.3:
// > To modify the PLL configuration, proceed as follows:
@ -239,25 +157,16 @@ impl PllConfig {
}
}
// Configure PLLSYSCFGR
RCC.pllsyscfgr().modify(|w| {
w.set_pllr(u8::from(self.r));
// Configure PLLCFGR
RCC.pllcfgr().modify(|w| {
w.set_pllr(self.r);
w.set_pllren(false);
if let Some(q) = self.q {
w.set_pllq(u8::from(q));
}
w.set_pllq(self.q.unwrap_or(Pllq::DIV2));
w.set_pllqen(false);
if let Some(p) = self.p {
w.set_pllp(u8::from(p));
}
w.set_pllp(self.p.unwrap_or(Pllp::DIV2));
w.set_pllpen(false);
w.set_plln(self.n);
w.set_pllm(self.m as u8);
w.set_pllm(self.m);
w.set_pllsrc(src)
});
@ -269,7 +178,7 @@ impl PllConfig {
// > 5. Enable the desired PLL outputs by configuring PLLPEN, PLLQEN, and PLLREN in PLL
// > configuration register (RCC_PLLCFGR).
RCC.pllsyscfgr().modify(|w| {
RCC.pllcfgr().modify(|w| {
// We'll use R for system clock, so enable that unconditionally
w.set_pllren(true);
@ -293,14 +202,14 @@ pub(crate) unsafe fn init(config: Config) {
});
while !RCC.cr().read().hsirdy() {}
(HSI_FREQ.0 >> div.to_bits(), Sw::HSI)
(HSI_FREQ / div, Sw::HSI)
}
ClockSrc::HSE(freq) => {
// Enable HSE
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
(freq.0, Sw::HSE)
(freq, Sw::HSE)
}
ClockSrc::PLL(pll) => {
let freq = pll.init();
@ -310,15 +219,15 @@ pub(crate) unsafe fn init(config: Config) {
// Enable LSI
RCC.csr().write(|w| w.set_lsion(true));
while !RCC.csr().read().lsirdy() {}
(LSI_FREQ.0, Sw::LSI)
(LSI_FREQ, Sw::LSI)
}
};
// Determine the flash latency implied by the target clock speed
// RM0454 § 3.3.4:
let target_flash_latency = if sys_clk <= 24_000_000 {
let target_flash_latency = if sys_clk.0 <= 24_000_000 {
Latency::WS0
} else if sys_clk <= 48_000_000 {
} else if sys_clk.0 <= 48_000_000 {
Latency::WS1
} else {
Latency::WS2
@ -374,27 +283,25 @@ pub(crate) unsafe fn init(config: Config) {
FLASH.acr().modify(|w| w.set_latency(target_flash_latency));
}
let ahb_freq = Hertz(sys_clk) / config.ahb_pre;
let ahb_freq = sys_clk / config.ahb_pre;
let (apb_freq, apb_tim_freq) = match config.apb_pre {
APBPrescaler::DIV1 => (ahb_freq.0, ahb_freq.0),
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: Ppre = pre.into();
let pre: u8 = 1 << (pre.to_bits() - 3);
let freq = ahb_freq.0 / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
if config.low_power_run {
assert!(sys_clk <= 2_000_000);
assert!(sys_clk.0 <= 2_000_000);
PWR.cr1().modify(|w| w.set_lpr(true));
}
set_freqs(Clocks {
sys: Hertz(sys_clk),
sys: sys_clk,
ahb1: ahb_freq,
apb1: Hertz(apb_freq),
apb1_tim: Hertz(apb_tim_freq),
apb1: apb_freq,
apb1_tim: apb_tim_freq,
});
}

View File

@ -2,7 +2,9 @@ use stm32_metapac::flash::vals::Latency;
use stm32_metapac::rcc::vals::{Adcsel, Pllsrc, Sw};
use stm32_metapac::FLASH;
pub use super::bus::{AHBPrescaler, APBPrescaler};
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Pllm as PllM, Plln as PllN, Pllp as PllP, Pllq as PllQ, Pllr as PllR, Ppre as APBPrescaler,
};
use crate::pac::{PWR, RCC};
use crate::rcc::sealed::RccPeripheral;
use crate::rcc::{set_freqs, Clocks};
@ -61,181 +63,6 @@ impl Into<Pllsrc> for PllSrc {
}
}
seq_macro::seq!(P in 2..=31 {
/// Output divider for the PLL P output.
#[derive(Clone, Copy)]
pub enum PllP {
// Note: If PLL P is set to 0 the PLLP bit controls the output division. There does not seem to
// a good reason to do this so the API does not support it.
// Div1 is invalid
#(
Div~P,
)*
}
impl From<PllP> for u8 {
/// Returns the register value for the P output divider.
fn from(val: PllP) -> u8 {
match val {
#(
PllP::Div~P => P,
)*
}
}
}
});
impl PllP {
/// Returns the numeric value of the P output divider.
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
val as u32
}
}
/// Output divider for the PLL Q output.
#[derive(Clone, Copy)]
pub enum PllQ {
Div2,
Div4,
Div6,
Div8,
}
impl PllQ {
/// Returns the numeric value of the Q output divider.
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
(val as u32 + 1) * 2
}
}
impl From<PllQ> for u8 {
/// Returns the register value for the Q output divider.
fn from(val: PllQ) -> u8 {
match val {
PllQ::Div2 => 0b00,
PllQ::Div4 => 0b01,
PllQ::Div6 => 0b10,
PllQ::Div8 => 0b11,
}
}
}
/// Output divider for the PLL R output.
#[derive(Clone, Copy)]
pub enum PllR {
Div2,
Div4,
Div6,
Div8,
}
impl PllR {
/// Returns the numeric value of the R output divider.
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
(val as u32 + 1) * 2
}
}
impl From<PllR> for u8 {
/// Returns the register value for the R output divider.
fn from(val: PllR) -> u8 {
match val {
PllR::Div2 => 0b00,
PllR::Div4 => 0b01,
PllR::Div6 => 0b10,
PllR::Div8 => 0b11,
}
}
}
seq_macro::seq!(N in 8..=127 {
/// Multiplication factor for the PLL VCO input clock.
#[derive(Clone, Copy)]
pub enum PllN {
#(
Mul~N,
)*
}
impl From<PllN> for u8 {
/// Returns the register value for the N multiplication factor.
fn from(val: PllN) -> u8 {
match val {
#(
PllN::Mul~N => N,
)*
}
}
}
impl PllN {
/// Returns the numeric value of the N multiplication factor.
pub fn to_mul(self) -> u32 {
match self {
#(
PllN::Mul~N => N,
)*
}
}
}
});
/// PLL Pre-division. This must be set such that the PLL input is between 2.66 MHz and 16 MHz.
#[derive(Copy, Clone)]
pub enum PllM {
Div1,
Div2,
Div3,
Div4,
Div5,
Div6,
Div7,
Div8,
Div9,
Div10,
Div11,
Div12,
Div13,
Div14,
Div15,
Div16,
}
impl PllM {
/// Returns the numeric value of the M pre-division.
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
val as u32 + 1
}
}
impl From<PllM> for u8 {
/// Returns the register value for the M pre-division.
fn from(val: PllM) -> u8 {
match val {
PllM::Div1 => 0b0000,
PllM::Div2 => 0b0001,
PllM::Div3 => 0b0010,
PllM::Div4 => 0b0011,
PllM::Div5 => 0b0100,
PllM::Div6 => 0b0101,
PllM::Div7 => 0b0110,
PllM::Div8 => 0b0111,
PllM::Div9 => 0b1000,
PllM::Div10 => 0b1001,
PllM::Div11 => 0b1010,
PllM::Div12 => 0b1011,
PllM::Div13 => 0b1100,
PllM::Div14 => 0b1101,
PllM::Div15 => 0b1110,
PllM::Div16 => 0b1111,
}
}
}
/// PLL Configuration
///
/// Use this struct to configure the PLL source, input frequency, multiplication factor, and output
@ -360,12 +187,12 @@ pub(crate) unsafe fn init(config: Config) {
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
HSI_FREQ.0
HSI_FREQ
}
PllSrc::HSE(freq) => {
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
freq.0
freq
}
};
@ -373,7 +200,7 @@ pub(crate) unsafe fn init(config: Config) {
RCC.cr().modify(|w| w.set_pllon(false));
while RCC.cr().read().pllrdy() {}
let internal_freq = src_freq / pll_config.prediv_m.to_div() * pll_config.mul_n.to_mul();
let internal_freq = src_freq / pll_config.prediv_m * pll_config.mul_n;
RCC.pllcfgr().write(|w| {
w.set_plln(pll_config.mul_n.into());
@ -383,26 +210,26 @@ pub(crate) unsafe fn init(config: Config) {
let pll_p_freq = pll_config.div_p.map(|div_p| {
RCC.pllcfgr().modify(|w| {
w.set_pllpdiv(div_p.into());
w.set_pllp(div_p);
w.set_pllpen(true);
});
Hertz(internal_freq / div_p.to_div())
internal_freq / div_p
});
let pll_q_freq = pll_config.div_q.map(|div_q| {
RCC.pllcfgr().modify(|w| {
w.set_pllq(div_q.into());
w.set_pllq(div_q);
w.set_pllqen(true);
});
Hertz(internal_freq / div_q.to_div())
internal_freq / div_q
});
let pll_r_freq = pll_config.div_r.map(|div_r| {
RCC.pllcfgr().modify(|w| {
w.set_pllr(div_r.into());
w.set_pllr(div_r);
w.set_pllren(true);
});
Hertz(internal_freq / div_r.to_div())
internal_freq / div_r
});
// Enable the PLL

View File

@ -6,8 +6,8 @@ use crate::pac::pwr::vals::Vos;
pub use crate::pac::rcc::vals::Adcdacsel as AdcClockSource;
#[cfg(stm32h7)]
pub use crate::pac::rcc::vals::Adcsel as AdcClockSource;
pub use crate::pac::rcc::vals::Ckpersel as PerClockSource;
use crate::pac::rcc::vals::{Ckpersel, Hsidiv, Pllrge, Pllsrc, Pllvcosel, Sw, Timpre};
pub use crate::pac::rcc::vals::{Ckpersel as PerClockSource, Plldiv as PllDiv, Pllm as PllPreDiv, Plln as PllMul};
use crate::pac::{FLASH, PWR, RCC};
#[cfg(stm32h7)]
use crate::rcc::bd::{BackupDomain, LseCfg, RtcClockSource};
@ -34,7 +34,7 @@ const VCO_WIDE_RANGE: RangeInclusive<u32> = 192_000_000..=836_000_000;
#[cfg(any(pwr_h7rm0399, pwr_h7rm0433))]
const VCO_WIDE_RANGE: RangeInclusive<u32> = 192_000_000..=960_000_000;
pub use super::bus::{AHBPrescaler, APBPrescaler};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum VoltageScale {
@ -109,19 +109,19 @@ pub struct Pll {
#[cfg(stm32h5)]
pub source: PllSource,
/// PLL pre-divider (DIVM). Must be between 1 and 63.
pub prediv: u8,
/// PLL pre-divider (DIVM).
pub prediv: PllPreDiv,
/// PLL multiplication factor. Must be between 4 and 512.
pub mul: u16,
/// PLL multiplication factor.
pub mul: PllMul,
/// PLL P division factor. If None, PLL P output is disabled. Must be between 1 and 128.
/// PLL P division factor. If None, PLL P output is disabled.
/// On PLL1, it must be even (in particular, it cannot be 1.)
pub divp: Option<u16>,
/// PLL Q division factor. If None, PLL Q output is disabled. Must be between 1 and 128.
pub divq: Option<u16>,
/// PLL R division factor. If None, PLL R output is disabled. Must be between 1 and 128.
pub divr: Option<u16>,
pub divp: Option<PllDiv>,
/// PLL Q division factor. If None, PLL Q output is disabled.
pub divq: Option<PllDiv>,
/// PLL R division factor. If None, PLL R output is disabled.
pub divr: Option<PllDiv>,
}
fn apb_div_tim(apb: &APBPrescaler, clk: Hertz, tim: TimerPrescaler) -> Hertz {
@ -604,9 +604,9 @@ fn init_pll(num: usize, config: Option<Pll>, input: &PllInput) -> PllOutput {
// "To save power when PLL1 is not used, the value of PLL1M must be set to 0.""
#[cfg(stm32h7)]
RCC.pllckselr().write(|w| w.set_divm(num, 0));
RCC.pllckselr().write(|w| w.set_divm(num, PllPreDiv::from_bits(0)));
#[cfg(stm32h5)]
RCC.pllcfgr(num).write(|w| w.set_divm(0));
RCC.pllcfgr(num).write(|w| w.set_divm(PllPreDiv::from_bits(0)));
return PllOutput {
p: None,
@ -615,9 +615,6 @@ fn init_pll(num: usize, config: Option<Pll>, input: &PllInput) -> PllOutput {
};
};
assert!(1 <= config.prediv && config.prediv <= 63);
assert!(4 <= config.mul && config.mul <= 512);
#[cfg(stm32h5)]
let source = config.source;
#[cfg(stm32h7)]
@ -653,22 +650,16 @@ fn init_pll(num: usize, config: Option<Pll>, input: &PllInput) -> PllOutput {
};
let p = config.divp.map(|div| {
assert!(1 <= div && div <= 128);
if num == 0 {
// on PLL1, DIVP must be even.
assert!(div % 2 == 0);
// The enum value is 1 less than the divider, so check it's odd.
assert!(div.to_bits() % 2 == 1);
}
vco_clk / div
});
let q = config.divq.map(|div| {
assert!(1 <= div && div <= 128);
vco_clk / div
});
let r = config.divr.map(|div| {
assert!(1 <= div && div <= 128);
vco_clk / div
});
let q = config.divq.map(|div| vco_clk / div);
let r = config.divr.map(|div| vco_clk / div);
#[cfg(stm32h5)]
RCC.pllcfgr(num).write(|w| {
@ -699,10 +690,10 @@ fn init_pll(num: usize, config: Option<Pll>, input: &PllInput) -> PllOutput {
}
RCC.plldivr(num).write(|w| {
w.set_plln(config.mul - 1);
w.set_pllp((config.divp.unwrap_or(1) - 1) as u8);
w.set_pllq((config.divq.unwrap_or(1) - 1) as u8);
w.set_pllr((config.divr.unwrap_or(1) - 1) as u8);
w.set_plln(config.mul);
w.set_pllp(config.divp.unwrap_or(PllDiv::DIV2));
w.set_pllq(config.divq.unwrap_or(PllDiv::DIV2));
w.set_pllr(config.divr.unwrap_or(PllDiv::DIV2));
});
RCC.cr().modify(|w| w.set_pllon(num, true));

View File

@ -1,8 +1,8 @@
use super::bd::BackupDomain;
pub use super::bus::{AHBPrescaler, APBPrescaler};
use super::RtcClockSource;
pub use crate::pac::pwr::vals::Vos as VoltageScale;
use crate::pac::rcc::vals::{Hpre, Msirange, Plldiv, Pllmul, Pllsrc, Ppre, Sw};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
#[cfg(crs)]
use crate::pac::{crs, CRS, SYSCFG};
use crate::pac::{FLASH, PWR, RCC};

View File

@ -1,5 +1,5 @@
pub use super::bus::{AHBPrescaler, APBPrescaler};
use crate::pac::rcc::vals::{Hpre, Msirange, Plldiv, Pllmul, Pllsrc, Ppre, Sw};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;

View File

@ -1,7 +1,9 @@
use stm32_metapac::rcc::regs::Cfgr;
pub use super::bus::{AHBPrescaler, APBPrescaler};
use crate::pac::rcc::vals::{Hpre, Msirange, Pllsrc, Ppre, Sw};
use crate::pac::rcc::regs::Cfgr;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Msirange as MSIRange, Pllm as PllPreDiv, Plln as PllMul, Pllp as PllPDiv, Pllq as PllQDiv,
Pllr as PllRDiv, Ppre as APBPrescaler,
};
use crate::pac::rcc::vals::{Msirange, Pllsrc, Sw};
use crate::pac::{FLASH, RCC};
use crate::rcc::bd::{BackupDomain, RtcClockSource};
use crate::rcc::{set_freqs, Clocks};
@ -17,62 +19,11 @@ pub const LSI_FREQ: Hertz = Hertz(32_000);
#[derive(Clone, Copy)]
pub enum ClockSrc {
MSI(MSIRange),
PLL(PLLSource, PLLClkDiv, PLLSrcDiv, PLLMul, Option<PLL48Div>),
PLL(PLLSource, PllRDiv, PllPreDiv, PllMul, Option<PllQDiv>),
HSE(Hertz),
HSI16,
}
/// MSI Clock Range
///
/// These ranges control the frequency of the MSI. Internally, these ranges map
/// to the `MSIRANGE` bits in the `RCC_ICSCR` register.
#[derive(Clone, Copy)]
pub enum MSIRange {
/// Around 100 kHz
Range0,
/// Around 200 kHz
Range1,
/// Around 400 kHz
Range2,
/// Around 800 kHz
Range3,
/// Around 1 MHz
Range4,
/// Around 2 MHz
Range5,
/// Around 4 MHz (reset value)
Range6,
/// Around 8 MHz
Range7,
/// Around 16 MHz
Range8,
/// Around 24 MHz
Range9,
/// Around 32 MHz
Range10,
/// Around 48 MHz
Range11,
}
impl Default for MSIRange {
fn default() -> MSIRange {
MSIRange::Range6
}
}
pub type PLL48Div = PLLClkDiv;
pub type PLLSAI1RDiv = PLLClkDiv;
pub type PLLSAI1QDiv = PLLClkDiv;
pub type PLLSAI1PDiv = PLLClkDiv;
/// PLL divider
#[derive(Clone, Copy)]
pub enum PLLDiv {
Div2,
Div3,
Div4,
}
/// PLL clock input source
#[derive(Clone, Copy)]
pub enum PLLSource {
@ -81,95 +32,6 @@ pub enum PLLSource {
MSI(MSIRange),
}
seq_macro::seq!(N in 8..=86 {
#[derive(Clone, Copy)]
pub enum PLLMul {
#(
Mul~N,
)*
}
impl From<PLLMul> for u8 {
fn from(val: PLLMul) -> u8 {
match val {
#(
PLLMul::Mul~N => N,
)*
}
}
}
impl PLLMul {
pub fn to_mul(self) -> u32 {
match self {
#(
PLLMul::Mul~N => N,
)*
}
}
}
});
#[derive(Clone, Copy)]
pub enum PLLClkDiv {
Div2,
Div4,
Div6,
Div8,
}
impl PLLClkDiv {
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
(val as u32 + 1) * 2
}
}
impl From<PLLClkDiv> for u8 {
fn from(val: PLLClkDiv) -> u8 {
match val {
PLLClkDiv::Div2 => 0b00,
PLLClkDiv::Div4 => 0b01,
PLLClkDiv::Div6 => 0b10,
PLLClkDiv::Div8 => 0b11,
}
}
}
#[derive(Clone, Copy)]
pub enum PLLSrcDiv {
Div1,
Div2,
Div3,
Div4,
Div5,
Div6,
Div7,
Div8,
}
impl PLLSrcDiv {
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
val as u32 + 1
}
}
impl From<PLLSrcDiv> for u8 {
fn from(val: PLLSrcDiv) -> u8 {
match val {
PLLSrcDiv::Div1 => 0b000,
PLLSrcDiv::Div2 => 0b001,
PLLSrcDiv::Div3 => 0b010,
PLLSrcDiv::Div4 => 0b011,
PLLSrcDiv::Div5 => 0b100,
PLLSrcDiv::Div6 => 0b101,
PLLSrcDiv::Div7 => 0b110,
PLLSrcDiv::Div8 => 0b111,
}
}
}
impl From<PLLSource> for Pllsrc {
fn from(val: PLLSource) -> Pllsrc {
match val {
@ -180,57 +42,13 @@ impl From<PLLSource> for Pllsrc {
}
}
impl From<MSIRange> for Msirange {
fn from(val: MSIRange) -> Msirange {
match val {
MSIRange::Range0 => Msirange::RANGE100K,
MSIRange::Range1 => Msirange::RANGE200K,
MSIRange::Range2 => Msirange::RANGE400K,
MSIRange::Range3 => Msirange::RANGE800K,
MSIRange::Range4 => Msirange::RANGE1M,
MSIRange::Range5 => Msirange::RANGE2M,
MSIRange::Range6 => Msirange::RANGE4M,
MSIRange::Range7 => Msirange::RANGE8M,
MSIRange::Range8 => Msirange::RANGE16M,
MSIRange::Range9 => Msirange::RANGE24M,
MSIRange::Range10 => Msirange::RANGE32M,
MSIRange::Range11 => Msirange::RANGE48M,
}
}
}
impl From<MSIRange> for u32 {
fn from(val: MSIRange) -> u32 {
match val {
MSIRange::Range0 => 100_000,
MSIRange::Range1 => 200_000,
MSIRange::Range2 => 400_000,
MSIRange::Range3 => 800_000,
MSIRange::Range4 => 1_000_000,
MSIRange::Range5 => 2_000_000,
MSIRange::Range6 => 4_000_000,
MSIRange::Range7 => 8_000_000,
MSIRange::Range8 => 16_000_000,
MSIRange::Range9 => 24_000_000,
MSIRange::Range10 => 32_000_000,
MSIRange::Range11 => 48_000_000,
}
}
}
/// Clocks configutation
pub struct Config {
pub mux: ClockSrc,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub pllsai1: Option<(
PLLMul,
PLLSrcDiv,
Option<PLLSAI1RDiv>,
Option<PLLSAI1QDiv>,
Option<PLLSAI1PDiv>,
)>,
pub pllsai1: Option<(PllMul, PllPreDiv, Option<PllRDiv>, Option<PllQDiv>, Option<PllPDiv>)>,
#[cfg(not(any(stm32l471, stm32l475, stm32l476, stm32l486)))]
pub hsi48: bool,
pub rtc_mux: RtcClockSource,
@ -242,7 +60,7 @@ impl Default for Config {
#[inline]
fn default() -> Config {
Config {
mux: ClockSrc::MSI(MSIRange::Range6),
mux: ClockSrc::MSI(MSIRange::RANGE4M),
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
@ -262,7 +80,7 @@ pub(crate) unsafe fn init(config: Config) {
// Turn on MSI and configure it to 4MHz.
RCC.cr().modify(|w| {
w.set_msirgsel(true); // MSI Range is provided by MSIRANGE[3:0].
w.set_msirange(MSIRange::default().into());
w.set_msirange(MSIRange::RANGE4M);
w.set_msipllen(false);
w.set_msion(true)
});
@ -298,40 +116,40 @@ pub(crate) unsafe fn init(config: Config) {
while !RCC.cr().read().msirdy() {}
// Enable as clock source for USB, RNG if running at 48 MHz
if let MSIRange::Range11 = range {
if range == MSIRange::RANGE48M {
RCC.ccipr().modify(|w| {
w.set_clk48sel(0b11);
});
}
(range.into(), Sw::MSI)
(msirange_to_hertz(range), Sw::MSI)
}
ClockSrc::HSI16 => {
// Enable HSI16
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
(HSI_FREQ.0, Sw::HSI16)
(HSI_FREQ, Sw::HSI16)
}
ClockSrc::HSE(freq) => {
// Enable HSE
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
(freq.0, Sw::HSE)
(freq, Sw::HSE)
}
ClockSrc::PLL(src, div, prediv, mul, pll48div) => {
ClockSrc::PLL(src, divr, prediv, mul, divq) => {
let src_freq = match src {
PLLSource::HSE(freq) => {
// Enable HSE
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
freq.0
freq
}
PLLSource::HSI16 => {
// Enable HSI
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
HSI_FREQ.0
HSI_FREQ
}
PLLSource::MSI(range) => {
// Enable MSI
@ -343,7 +161,8 @@ pub(crate) unsafe fn init(config: Config) {
w.set_msion(true);
});
while !RCC.cr().read().msirdy() {}
range.into()
msirange_to_hertz(range)
}
};
@ -351,28 +170,28 @@ pub(crate) unsafe fn init(config: Config) {
RCC.cr().modify(|w| w.set_pllon(false));
while RCC.cr().read().pllrdy() {}
let freq = (src_freq / prediv.to_div() * mul.to_mul()) / div.to_div();
let freq = src_freq / prediv * mul / divr;
#[cfg(any(stm32l4px, stm32l4qx, stm32l4rx, stm32l4sx))]
assert!(freq <= 120_000_000);
assert!(freq.0 <= 120_000_000);
#[cfg(not(any(stm32l4px, stm32l4qx, stm32l4rx, stm32l4sx)))]
assert!(freq <= 80_000_000);
assert!(freq.0 <= 80_000_000);
RCC.pllcfgr().write(move |w| {
w.set_plln(mul.into());
w.set_pllm(prediv.into());
w.set_pllr(div.into());
if let Some(pll48div) = pll48div {
w.set_pllq(pll48div.into());
w.set_plln(mul);
w.set_pllm(prediv);
w.set_pllr(divr);
if let Some(divq) = divq {
w.set_pllq(divq);
w.set_pllqen(true);
}
w.set_pllsrc(src.into());
});
// Enable as clock source for USB, RNG if PLL48 divisor is provided
if let Some(pll48div) = pll48div {
let freq = (src_freq / prediv.to_div() * mul.to_mul()) / pll48div.to_div();
assert!(freq == 48_000_000);
if let Some(divq) = divq {
let freq = src_freq / prediv * mul / divq;
assert!(freq.0 == 48_000_000);
RCC.ccipr().modify(|w| {
w.set_clk48sel(0b10);
});
@ -380,25 +199,25 @@ pub(crate) unsafe fn init(config: Config) {
if let Some((mul, prediv, r_div, q_div, p_div)) = config.pllsai1 {
RCC.pllsai1cfgr().write(move |w| {
w.set_pllsai1n(mul.into());
w.set_pllsai1m(prediv.into());
w.set_plln(mul);
w.set_pllm(prediv);
if let Some(r_div) = r_div {
w.set_pllsai1r(r_div.into());
w.set_pllsai1ren(true);
w.set_pllr(r_div);
w.set_pllren(true);
}
if let Some(q_div) = q_div {
w.set_pllsai1q(q_div.into());
w.set_pllsai1qen(true);
let freq = (src_freq / prediv.to_div() * mul.to_mul()) / q_div.to_div();
if freq == 48_000_000 {
w.set_pllq(q_div);
w.set_pllqen(true);
let freq = src_freq / prediv * mul / q_div;
if freq.0 == 48_000_000 {
RCC.ccipr().modify(|w| {
w.set_clk48sel(0b1);
});
}
}
if let Some(p_div) = p_div {
w.set_pllsai1pdiv(p_div.into());
w.set_pllsai1pen(true);
w.set_pllp(p_div);
w.set_pllpen(true);
}
});
@ -425,17 +244,13 @@ pub(crate) unsafe fn init(config: Config) {
// Set flash wait states
FLASH.acr().modify(|w| {
w.set_latency(if sys_clk <= 16_000_000 {
0b000
} else if sys_clk <= 32_000_000 {
0b001
} else if sys_clk <= 48_000_000 {
0b010
} else if sys_clk <= 64_000_000 {
0b011
} else {
0b100
});
w.set_latency(match sys_clk.0 {
0..=16_000_000 => 0,
0..=32_000_000 => 1,
0..=48_000_000 => 2,
0..=64_000_000 => 3,
_ => 4,
})
});
RCC.cfgr().modify(|w| {
@ -445,43 +260,50 @@ pub(crate) unsafe fn init(config: Config) {
w.set_ppre2(config.apb2_pre.into());
});
let ahb_freq: u32 = match config.ahb_pre {
AHBPrescaler::DIV1 => sys_clk,
pre => {
let pre: Hpre = pre.into();
let pre = 1 << (pre.to_bits() as u32 - 7);
sys_clk / pre
}
};
let ahb_freq = sys_clk / config.ahb_pre;
let (apb1_freq, apb1_tim_freq) = match config.apb1_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: Ppre = pre.into();
let pre: u8 = 1 << (pre.to_bits() - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
let (apb2_freq, apb2_tim_freq) = match config.apb2_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: Ppre = pre.into();
let pre: u8 = 1 << (pre.to_bits() - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
set_freqs(Clocks {
sys: Hertz(sys_clk),
ahb1: Hertz(ahb_freq),
ahb2: Hertz(ahb_freq),
ahb3: Hertz(ahb_freq),
apb1: Hertz(apb1_freq),
apb2: Hertz(apb2_freq),
apb1_tim: Hertz(apb1_tim_freq),
apb2_tim: Hertz(apb2_tim_freq),
sys: sys_clk,
ahb1: ahb_freq,
ahb2: ahb_freq,
ahb3: ahb_freq,
apb1: apb1_freq,
apb2: apb2_freq,
apb1_tim: apb1_tim_freq,
apb2_tim: apb2_tim_freq,
});
}
fn msirange_to_hertz(range: Msirange) -> Hertz {
match range {
MSIRange::RANGE100K => Hertz(100_000),
MSIRange::RANGE200K => Hertz(200_000),
MSIRange::RANGE400K => Hertz(400_000),
MSIRange::RANGE800K => Hertz(800_000),
MSIRange::RANGE1M => Hertz(1_000_000),
MSIRange::RANGE2M => Hertz(2_000_000),
MSIRange::RANGE4M => Hertz(4_000_000),
MSIRange::RANGE8M => Hertz(8_000_000),
MSIRange::RANGE16M => Hertz(16_000_000),
MSIRange::RANGE24M => Hertz(24_000_000),
MSIRange::RANGE32M => Hertz(32_000_000),
MSIRange::RANGE48M => Hertz(48_000_000),
_ => unreachable!(),
}
}

View File

@ -1,8 +1,11 @@
use stm32_metapac::PWR;
pub use super::bus::{AHBPrescaler, APBPrescaler};
use crate::pac::rcc::vals::{Hpre, Msirange, Pllsrc, Ppre, Sw};
use crate::pac::{FLASH, RCC};
use crate::pac::rcc::regs::Cfgr;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Msirange as MSIRange, Pllm as PllPreDiv, Plln as PllMul, Pllp as PllPDiv, Pllq as PllQDiv,
Pllr as PllRDiv, Ppre as APBPrescaler,
};
use crate::pac::rcc::vals::{Msirange, Pllsrc, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::bd::RtcClockSource;
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
@ -16,62 +19,11 @@ pub const LSI_FREQ: Hertz = Hertz(32_000);
#[derive(Clone, Copy)]
pub enum ClockSrc {
MSI(MSIRange),
PLL(PLLSource, PLLClkDiv, PLLSrcDiv, PLLMul, Option<PLL48Div>),
PLL(PLLSource, PllRDiv, PllPreDiv, PllMul, Option<PllQDiv>),
HSE(Hertz),
HSI16,
}
/// MSI Clock Range
///
/// These ranges control the frequency of the MSI. Internally, these ranges map
/// to the `MSIRANGE` bits in the `RCC_ICSCR` register.
#[derive(Clone, Copy)]
pub enum MSIRange {
/// Around 100 kHz
Range0,
/// Around 200 kHz
Range1,
/// Around 400 kHz
Range2,
/// Around 800 kHz
Range3,
/// Around 1 MHz
Range4,
/// Around 2 MHz
Range5,
/// Around 4 MHz (reset value)
Range6,
/// Around 8 MHz
Range7,
/// Around 16 MHz
Range8,
/// Around 24 MHz
Range9,
/// Around 32 MHz
Range10,
/// Around 48 MHz
Range11,
}
impl Default for MSIRange {
fn default() -> MSIRange {
MSIRange::Range6
}
}
pub type PLL48Div = PLLClkDiv;
pub type PLLSAI1RDiv = PLLClkDiv;
pub type PLLSAI1QDiv = PLLClkDiv;
pub type PLLSAI1PDiv = PLLClkDiv;
/// PLL divider
#[derive(Clone, Copy)]
pub enum PLLDiv {
Div2,
Div3,
Div4,
}
/// PLL clock input source
#[derive(Clone, Copy)]
pub enum PLLSource {
@ -80,95 +32,6 @@ pub enum PLLSource {
MSI(MSIRange),
}
seq_macro::seq!(N in 8..=86 {
#[derive(Clone, Copy)]
pub enum PLLMul {
#(
Mul~N,
)*
}
impl From<PLLMul> for u8 {
fn from(val: PLLMul) -> u8 {
match val {
#(
PLLMul::Mul~N => N,
)*
}
}
}
impl PLLMul {
pub fn to_mul(self) -> u32 {
match self {
#(
PLLMul::Mul~N => N,
)*
}
}
}
});
#[derive(Clone, Copy)]
pub enum PLLClkDiv {
Div2,
Div4,
Div6,
Div8,
}
impl PLLClkDiv {
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
(val as u32 + 1) * 2
}
}
impl From<PLLClkDiv> for u8 {
fn from(val: PLLClkDiv) -> u8 {
match val {
PLLClkDiv::Div2 => 0b00,
PLLClkDiv::Div4 => 0b01,
PLLClkDiv::Div6 => 0b10,
PLLClkDiv::Div8 => 0b11,
}
}
}
#[derive(Clone, Copy)]
pub enum PLLSrcDiv {
Div1,
Div2,
Div3,
Div4,
Div5,
Div6,
Div7,
Div8,
}
impl PLLSrcDiv {
pub fn to_div(self) -> u32 {
let val: u8 = self.into();
val as u32 + 1
}
}
impl From<PLLSrcDiv> for u8 {
fn from(val: PLLSrcDiv) -> u8 {
match val {
PLLSrcDiv::Div1 => 0b000,
PLLSrcDiv::Div2 => 0b001,
PLLSrcDiv::Div3 => 0b010,
PLLSrcDiv::Div4 => 0b011,
PLLSrcDiv::Div5 => 0b100,
PLLSrcDiv::Div6 => 0b101,
PLLSrcDiv::Div7 => 0b110,
PLLSrcDiv::Div8 => 0b111,
}
}
}
impl From<PLLSource> for Pllsrc {
fn from(val: PLLSource) -> Pllsrc {
match val {
@ -179,75 +42,59 @@ impl From<PLLSource> for Pllsrc {
}
}
impl From<MSIRange> for Msirange {
fn from(val: MSIRange) -> Msirange {
match val {
MSIRange::Range0 => Msirange::RANGE100K,
MSIRange::Range1 => Msirange::RANGE200K,
MSIRange::Range2 => Msirange::RANGE400K,
MSIRange::Range3 => Msirange::RANGE800K,
MSIRange::Range4 => Msirange::RANGE1M,
MSIRange::Range5 => Msirange::RANGE2M,
MSIRange::Range6 => Msirange::RANGE4M,
MSIRange::Range7 => Msirange::RANGE8M,
MSIRange::Range8 => Msirange::RANGE16M,
MSIRange::Range9 => Msirange::RANGE24M,
MSIRange::Range10 => Msirange::RANGE32M,
MSIRange::Range11 => Msirange::RANGE48M,
}
}
}
impl From<MSIRange> for u32 {
fn from(val: MSIRange) -> u32 {
match val {
MSIRange::Range0 => 100_000,
MSIRange::Range1 => 200_000,
MSIRange::Range2 => 400_000,
MSIRange::Range3 => 800_000,
MSIRange::Range4 => 1_000_000,
MSIRange::Range5 => 2_000_000,
MSIRange::Range6 => 4_000_000,
MSIRange::Range7 => 8_000_000,
MSIRange::Range8 => 16_000_000,
MSIRange::Range9 => 24_000_000,
MSIRange::Range10 => 32_000_000,
MSIRange::Range11 => 48_000_000,
}
}
}
/// Clocks configutation
pub struct Config {
pub mux: ClockSrc,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub pllsai1: Option<(
PLLMul,
PLLSrcDiv,
Option<PLLSAI1RDiv>,
Option<PLLSAI1QDiv>,
Option<PLLSAI1PDiv>,
)>,
pub pllsai1: Option<(PllMul, PllPreDiv, Option<PllRDiv>, Option<PllQDiv>, Option<PllPDiv>)>,
pub hsi48: bool,
pub rtc_mux: RtcClockSource,
pub lse: Option<Hertz>,
pub lsi: bool,
}
impl Default for Config {
#[inline]
fn default() -> Config {
Config {
mux: ClockSrc::MSI(MSIRange::Range6),
mux: ClockSrc::MSI(MSIRange::RANGE4M),
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
pllsai1: None,
hsi48: false,
rtc_mux: RtcClockSource::LSI,
lsi: true,
lse: None,
}
}
}
pub(crate) unsafe fn init(config: Config) {
// Switch to MSI to prevent problems with PLL configuration.
if !RCC.cr().read().msion() {
// Turn on MSI and configure it to 4MHz.
RCC.cr().modify(|w| {
w.set_msirgsel(true); // MSI Range is provided by MSIRANGE[3:0].
w.set_msirange(MSIRange::RANGE4M);
w.set_msipllen(false);
w.set_msion(true)
});
// Wait until MSI is running
while !RCC.cr().read().msirdy() {}
}
if RCC.cfgr().read().sws() != Sw::MSI {
// Set MSI as a clock source, reset prescalers.
RCC.cfgr().write_value(Cfgr::default());
// Wait for clock switch status bits to change.
while RCC.cfgr().read().sws() != Sw::MSI {}
}
//BackupDomain::configure_ls(config.rtc_mux, config.lsi, config.lse.map(|_| Default::default()));
PWR.cr1().modify(|w| w.set_vos(stm32_metapac::pwr::vals::Vos::RANGE0));
let (sys_clk, sw) = match config.mux {
ClockSrc::MSI(range) => {
@ -255,47 +102,53 @@ pub(crate) unsafe fn init(config: Config) {
RCC.cr().write(|w| {
let bits: Msirange = range.into();
w.set_msirange(bits);
w.set_msipllen(false);
w.set_msirgsel(true);
w.set_msion(true);
if config.rtc_mux == RtcClockSource::LSE {
// If LSE is enabled, enable calibration of MSI
w.set_msipllen(true);
} else {
w.set_msipllen(false);
}
});
while !RCC.cr().read().msirdy() {}
// Enable as clock source for USB, RNG if running at 48 MHz
if let MSIRange::Range11 = range {
if range == MSIRange::RANGE48M {
RCC.ccipr1().modify(|w| {
w.set_clk48msel(0b11);
});
}
(range.into(), Sw::MSI)
(msirange_to_hertz(range), Sw::MSI)
}
ClockSrc::HSI16 => {
// Enable HSI16
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
(HSI_FREQ.0, Sw::HSI16)
(HSI_FREQ, Sw::HSI16)
}
ClockSrc::HSE(freq) => {
// Enable HSE
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
(freq.0, Sw::HSE)
(freq, Sw::HSE)
}
ClockSrc::PLL(src, div, prediv, mul, pll48div) => {
ClockSrc::PLL(src, divr, prediv, mul, divq) => {
let src_freq = match src {
PLLSource::HSE(freq) => {
// Enable HSE
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
freq.0
freq
}
PLLSource::HSI16 => {
// Enable HSI
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
HSI_FREQ.0
HSI_FREQ
}
PLLSource::MSI(range) => {
// Enable MSI
@ -307,7 +160,8 @@ pub(crate) unsafe fn init(config: Config) {
w.set_msion(true);
});
while !RCC.cr().read().msirdy() {}
range.into()
msirange_to_hertz(range)
}
};
@ -315,23 +169,23 @@ pub(crate) unsafe fn init(config: Config) {
RCC.cr().modify(|w| w.set_pllon(false));
while RCC.cr().read().pllrdy() {}
let freq = (src_freq / prediv.to_div() * mul.to_mul()) / div.to_div();
let freq = src_freq / prediv * mul / divr;
RCC.pllcfgr().write(move |w| {
w.set_plln(mul.into());
w.set_pllm(prediv.into());
w.set_pllr(div.into());
if let Some(pll48div) = pll48div {
w.set_pllq(pll48div.into());
w.set_plln(mul);
w.set_pllm(prediv);
w.set_pllr(divr);
if let Some(divq) = divq {
w.set_pllq(divq);
w.set_pllqen(true);
}
w.set_pllsrc(src.into());
});
// Enable as clock source for USB, RNG if PLL48 divisor is provided
if let Some(pll48div) = pll48div {
let freq = (src_freq / prediv.to_div() * mul.to_mul()) / pll48div.to_div();
assert!(freq == 48_000_000);
if let Some(divq) = divq {
let freq = src_freq / prediv * mul / divq;
assert!(freq.0 == 48_000_000);
RCC.ccipr1().modify(|w| {
w.set_clk48msel(0b10);
});
@ -339,25 +193,25 @@ pub(crate) unsafe fn init(config: Config) {
if let Some((mul, prediv, r_div, q_div, p_div)) = config.pllsai1 {
RCC.pllsai1cfgr().write(move |w| {
w.set_pllsai1n(mul.into());
w.set_pllsai1m(prediv.into());
w.set_plln(mul);
w.set_pllm(prediv);
if let Some(r_div) = r_div {
w.set_pllsai1r(r_div.into());
w.set_pllsai1ren(true);
w.set_pllr(r_div);
w.set_pllren(true);
}
if let Some(q_div) = q_div {
w.set_pllsai1q(q_div.into());
w.set_pllsai1qen(true);
let freq = (src_freq / prediv.to_div() * mul.to_mul()) / q_div.to_div();
if freq == 48_000_000 {
w.set_pllq(q_div);
w.set_pllqen(true);
let freq = src_freq / prediv * mul / q_div;
if freq.0 == 48_000_000 {
RCC.ccipr1().modify(|w| {
w.set_clk48msel(0b1);
});
}
}
if let Some(p_div) = p_div {
w.set_pllsai1pdiv(p_div.into());
w.set_pllsai1pen(true);
w.set_pllp(p_div);
w.set_pllpen(true);
}
});
@ -384,7 +238,7 @@ pub(crate) unsafe fn init(config: Config) {
// Set flash wait states
// VCORE Range 0 (performance), others TODO
FLASH.acr().modify(|w| {
w.set_latency(match sys_clk {
w.set_latency(match sys_clk.0 {
0..=20_000_000 => 0,
0..=40_000_000 => 1,
0..=60_000_000 => 2,
@ -401,43 +255,50 @@ pub(crate) unsafe fn init(config: Config) {
w.set_ppre2(config.apb2_pre.into());
});
let ahb_freq: u32 = match config.ahb_pre {
AHBPrescaler::DIV1 => sys_clk,
pre => {
let pre: Hpre = pre.into();
let pre = 1 << (pre.to_bits() as u32 - 7);
sys_clk / pre
}
};
let ahb_freq = sys_clk / config.ahb_pre;
let (apb1_freq, apb1_tim_freq) = match config.apb1_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: Ppre = pre.into();
let pre: u8 = 1 << (pre.to_bits() - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
let (apb2_freq, apb2_tim_freq) = match config.apb2_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: Ppre = pre.into();
let pre: u8 = 1 << (pre.to_bits() - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
set_freqs(Clocks {
sys: Hertz(sys_clk),
ahb1: Hertz(ahb_freq),
ahb2: Hertz(ahb_freq),
ahb3: Hertz(ahb_freq),
apb1: Hertz(apb1_freq),
apb2: Hertz(apb2_freq),
apb1_tim: Hertz(apb1_tim_freq),
apb2_tim: Hertz(apb2_tim_freq),
sys: sys_clk,
ahb1: ahb_freq,
ahb2: ahb_freq,
ahb3: ahb_freq,
apb1: apb1_freq,
apb2: apb2_freq,
apb1_tim: apb1_tim_freq,
apb2_tim: apb2_tim_freq,
});
}
fn msirange_to_hertz(range: Msirange) -> Hertz {
match range {
MSIRange::RANGE100K => Hertz(100_000),
MSIRange::RANGE200K => Hertz(200_000),
MSIRange::RANGE400K => Hertz(400_000),
MSIRange::RANGE800K => Hertz(800_000),
MSIRange::RANGE1M => Hertz(1_000_000),
MSIRange::RANGE2M => Hertz(2_000_000),
MSIRange::RANGE4M => Hertz(4_000_000),
MSIRange::RANGE8M => Hertz(8_000_000),
MSIRange::RANGE16M => Hertz(16_000_000),
MSIRange::RANGE24M => Hertz(24_000_000),
MSIRange::RANGE32M => Hertz(32_000_000),
MSIRange::RANGE48M => Hertz(48_000_000),
_ => unreachable!(),
}
}

View File

@ -6,7 +6,6 @@ pub use crate::rcc::bd::RtcClockSource;
use crate::time::Hertz;
pub(crate) mod bd;
mod bus;
mod mco;
pub use mco::*;

View File

@ -1,6 +1,5 @@
use stm32_metapac::rcc::vals::{Msirange, Msirgsel, Pllm, Pllmboost, Pllrge, Pllsrc, Sw};
pub use super::bus::{AHBPrescaler, APBPrescaler};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Msirange, Plldiv, Pllm, Plln, Ppre as APBPrescaler};
use crate::pac::rcc::vals::{Msirgsel, Pllmboost, Pllrge, Pllsrc, Sw};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
@ -16,7 +15,7 @@ pub use crate::pac::pwr::vals::Vos as VoltageScale;
#[derive(Copy, Clone)]
pub enum ClockSrc {
/// Use an internal medium speed oscillator (MSIS) as the system clock.
MSI(MSIRange),
MSI(Msirange),
/// Use the external high speed clock as the system clock.
///
/// HSE clocks faster than 25 MHz require at least `VoltageScale::RANGE3`, and HSE clocks must
@ -31,29 +30,29 @@ pub enum ClockSrc {
impl Default for ClockSrc {
fn default() -> Self {
// The default system clock source is MSIS @ 4 MHz, per RM0456 § 11.4.9
ClockSrc::MSI(MSIRange::Range4mhz)
ClockSrc::MSI(Msirange::RANGE_4MHZ)
}
}
#[derive(Clone, Copy, Debug)]
#[derive(Clone, Copy)]
pub struct PllConfig {
/// The clock source for the PLL.
pub source: PllSrc,
/// The PLL prescaler.
///
/// The clock speed of the `source` divided by `m` must be between 4 and 16 MHz.
pub m: PllM,
pub m: Pllm,
/// The PLL multiplier.
///
/// The multiplied clock `source` divided by `m` times `n` must be between 128 and 544
/// MHz. The upper limit may be lower depending on the `Config { voltage_range }`.
pub n: PllN,
pub n: Plln,
/// The divider for the R output.
///
/// When used to drive the system clock, `source` divided by `m` times `n` divided by `r`
/// must not exceed 160 MHz. System clocks above 55 MHz require a non-default
/// `Config { voltage_range }`.
pub r: PllClkDiv,
pub r: Plldiv,
}
impl PllConfig {
@ -61,27 +60,27 @@ impl PllConfig {
pub const fn hsi16_160mhz() -> Self {
PllConfig {
source: PllSrc::HSI16,
m: PllM::NotDivided,
n: PllN::Mul10,
r: PllClkDiv::NotDivided,
m: Pllm::DIV1,
n: Plln::MUL10,
r: Plldiv::DIV1,
}
}
/// A configuration for MSIS @ 48 MHz / 3 * 10 / 1 = 160 MHz
pub const fn msis_160mhz() -> Self {
PllConfig {
source: PllSrc::MSIS(MSIRange::Range48mhz),
m: PllM::Div3,
n: PllN::Mul10,
r: PllClkDiv::NotDivided,
source: PllSrc::MSIS(Msirange::RANGE_48MHZ),
m: Pllm::DIV3,
n: Plln::MUL10,
r: Plldiv::DIV1,
}
}
}
#[derive(Clone, Copy, Debug)]
#[derive(Clone, Copy)]
pub enum PllSrc {
/// Use an internal medium speed oscillator as the PLL source.
MSIS(MSIRange),
MSIS(Msirange),
/// Use the external high speed clock as the system PLL source.
///
/// HSE clocks faster than 25 MHz require at least `VoltageScale::RANGE3`, and HSE clocks must
@ -101,75 +100,6 @@ impl Into<Pllsrc> for PllSrc {
}
}
seq_macro::seq!(N in 2..=128 {
#[derive(Copy, Clone, Debug)]
pub enum PllClkDiv {
NotDivided = 1,
#(
Div~N = N,
)*
}
impl PllClkDiv {
fn to_div(&self) -> u8 {
match self {
PllClkDiv::NotDivided => 0,
#(
PllClkDiv::Div~N => N - 1,
)*
}
}
}
});
seq_macro::seq!(N in 4..=512 {
#[derive(Copy, Clone, Debug)]
pub enum PllN {
NotMultiplied = 1,
#(
Mul~N = N,
)*
}
impl PllN {
fn to_mul(&self) -> u16 {
match self {
PllN::NotMultiplied => 0,
#(
PllN::Mul~N => N - 1,
)*
}
}
}
});
// Pre-division
#[derive(Copy, Clone, Debug)]
pub enum PllM {
NotDivided = 0b0000,
Div2 = 0b0001,
Div3 = 0b0010,
Div4 = 0b0011,
Div5 = 0b0100,
Div6 = 0b0101,
Div7 = 0b0110,
Div8 = 0b0111,
Div9 = 0b1000,
Div10 = 0b1001,
Div11 = 0b1010,
Div12 = 0b1011,
Div13 = 0b1100,
Div14 = 0b1101,
Div15 = 0b1110,
Div16 = 0b1111,
}
impl Into<Pllm> for PllM {
fn into(self) -> Pllm {
Pllm::from_bits(self as u8)
}
}
impl Into<Sw> for ClockSrc {
fn into(self) -> Sw {
match self {
@ -181,56 +111,6 @@ impl Into<Sw> for ClockSrc {
}
}
#[derive(Debug, Copy, Clone)]
pub enum MSIRange {
/// The 48 MHz MSI speed is unavailable in `VoltageScale::RANGE4`.
Range48mhz = 48_000_000,
Range24mhz = 24_000_000,
Range16mhz = 16_000_000,
Range12mhz = 12_000_000,
Range4mhz = 4_000_000,
Range2mhz = 2_000_000,
Range1_33mhz = 1_330_000,
Range1mhz = 1_000_000,
Range3_072mhz = 3_072_000,
Range1_536mhz = 1_536_000,
Range1_024mhz = 1_024_000,
Range768khz = 768_000,
Range400khz = 400_000,
Range200khz = 200_000,
Range133khz = 133_000,
Range100khz = 100_000,
}
impl Into<u32> for MSIRange {
fn into(self) -> u32 {
self as u32
}
}
impl Into<Msirange> for MSIRange {
fn into(self) -> Msirange {
match self {
MSIRange::Range48mhz => Msirange::RANGE_48MHZ,
MSIRange::Range24mhz => Msirange::RANGE_24MHZ,
MSIRange::Range16mhz => Msirange::RANGE_16MHZ,
MSIRange::Range12mhz => Msirange::RANGE_12MHZ,
MSIRange::Range4mhz => Msirange::RANGE_4MHZ,
MSIRange::Range2mhz => Msirange::RANGE_2MHZ,
MSIRange::Range1_33mhz => Msirange::RANGE_1_33MHZ,
MSIRange::Range1mhz => Msirange::RANGE_1MHZ,
MSIRange::Range3_072mhz => Msirange::RANGE_3_072MHZ,
MSIRange::Range1_536mhz => Msirange::RANGE_1_536MHZ,
MSIRange::Range1_024mhz => Msirange::RANGE_1_024MHZ,
MSIRange::Range768khz => Msirange::RANGE_768KHZ,
MSIRange::Range400khz => Msirange::RANGE_400KHZ,
MSIRange::Range200khz => Msirange::RANGE_200KHZ,
MSIRange::Range133khz => Msirange::RANGE_133KHZ,
MSIRange::Range100khz => Msirange::RANGE_100KHZ,
}
}
}
#[derive(Copy, Clone)]
pub struct Config {
pub mux: ClockSrc,
@ -273,11 +153,11 @@ impl Config {
frequency
}
unsafe fn init_msis(&self, range: MSIRange) -> Hertz {
unsafe fn init_msis(&self, range: Msirange) -> Hertz {
// Check MSI output per RM0456 § 11.4.10
match self.voltage_range {
VoltageScale::RANGE4 => {
assert!(range as u32 <= 24_000_000);
assert!(msirange_to_hertz(range).0 <= 24_000_000);
}
_ => {}
}
@ -291,8 +171,7 @@ impl Config {
}
RCC.icscr1().modify(|w| {
let bits: Msirange = range.into();
w.set_msisrange(bits);
w.set_msisrange(range);
w.set_msirgsel(Msirgsel::RCC_ICSCR1);
});
RCC.cr().write(|w| {
@ -300,7 +179,7 @@ impl Config {
w.set_msison(true);
});
while !RCC.cr().read().msisrdy() {}
Hertz(range as u32)
msirange_to_hertz(range)
}
}
@ -344,14 +223,14 @@ pub(crate) unsafe fn init(config: Config) {
};
// Calculate the reference clock, which is the source divided by m
let reference_clk = source_clk / (pll.m as u8 as u32 + 1);
let reference_clk = source_clk / pll.m;
// Check limits per RM0456 § 11.4.6
assert!(Hertz::mhz(4) <= reference_clk && reference_clk <= Hertz::mhz(16));
// Calculate the PLL1 VCO clock and PLL1 R output clock
let pll1_clk = reference_clk * (pll.n as u8 as u32);
let pll1r_clk = pll1_clk / (pll.r as u8 as u32);
let pll1_clk = reference_clk * pll.n;
let pll1r_clk = pll1_clk / pll.r;
// Check system clock per RM0456 § 11.4.9
assert!(pll1r_clk <= Hertz::mhz(160));
@ -387,11 +266,11 @@ pub(crate) unsafe fn init(config: Config) {
Pllmboost::DIV2
} else {
// Bypass, giving EPOD 4-16 MHz
Pllmboost::BYPASS
Pllmboost::DIV1
}
} else {
// Nothing to do
Pllmboost::BYPASS
Pllmboost::DIV1
};
// Disable the PLL, and wait for it to disable
@ -402,7 +281,7 @@ pub(crate) unsafe fn init(config: Config) {
RCC.pll1cfgr().write(|w| {
// Configure PLL1 source and prescaler
w.set_pllsrc(pll.source.into());
w.set_pllm(pll.m.into());
w.set_pllm(pll.m);
// Configure PLL1 input frequncy range
let input_range = if reference_clk <= Hertz::mhz(8) {
@ -422,9 +301,9 @@ pub(crate) unsafe fn init(config: Config) {
// Configure the PLL divisors
RCC.pll1divr().modify(|w| {
// Set the VCO multiplier
w.set_plln(pll.n.to_mul());
w.set_plln(pll.n);
// Set the R output divisor
w.set_pllr(pll.r.to_div());
w.set_pllr(pll.r);
});
// Do we need the EPOD booster to reach the target clock speed per § 10.5.4?
@ -442,8 +321,7 @@ pub(crate) unsafe fn init(config: Config) {
pll1r_clk
}
}
.0;
};
if config.hsi48 {
RCC.cr().modify(|w| w.set_hsi48on(true));
@ -455,13 +333,13 @@ pub(crate) unsafe fn init(config: Config) {
let wait_states = match config.voltage_range {
// VOS 1 range VCORE 1.26V - 1.40V
VoltageScale::RANGE1 => {
if sys_clk < 32_000_000 {
if sys_clk.0 < 32_000_000 {
0
} else if sys_clk < 64_000_000 {
} else if sys_clk.0 < 64_000_000 {
1
} else if sys_clk < 96_000_000 {
} else if sys_clk.0 < 96_000_000 {
2
} else if sys_clk < 128_000_000 {
} else if sys_clk.0 < 128_000_000 {
3
} else {
4
@ -469,11 +347,11 @@ pub(crate) unsafe fn init(config: Config) {
}
// VOS 2 range VCORE 1.15V - 1.26V
VoltageScale::RANGE2 => {
if sys_clk < 30_000_000 {
if sys_clk.0 < 30_000_000 {
0
} else if sys_clk < 60_000_000 {
} else if sys_clk.0 < 60_000_000 {
1
} else if sys_clk < 90_000_000 {
} else if sys_clk.0 < 90_000_000 {
2
} else {
3
@ -481,9 +359,9 @@ pub(crate) unsafe fn init(config: Config) {
}
// VOS 3 range VCORE 1.05V - 1.15V
VoltageScale::RANGE3 => {
if sys_clk < 24_000_000 {
if sys_clk.0 < 24_000_000 {
0
} else if sys_clk < 48_000_000 {
} else if sys_clk.0 < 48_000_000 {
1
} else {
2
@ -491,7 +369,7 @@ pub(crate) unsafe fn init(config: Config) {
}
// VOS 4 range VCORE 0.95V - 1.05V
VoltageScale::RANGE4 => {
if sys_clk < 12_000_000 {
if sys_clk.0 < 12_000_000 {
0
} else {
1
@ -522,62 +400,70 @@ pub(crate) unsafe fn init(config: Config) {
// Configure the bus prescalers
RCC.cfgr2().modify(|w| {
w.set_hpre(config.ahb_pre.into());
w.set_ppre1(config.apb1_pre.into());
w.set_ppre2(config.apb2_pre.into());
w.set_hpre(config.ahb_pre);
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
});
RCC.cfgr3().modify(|w| {
w.set_ppre3(config.apb3_pre.into());
w.set_ppre3(config.apb3_pre);
});
let ahb_freq: u32 = match config.ahb_pre {
AHBPrescaler::DIV1 => sys_clk,
pre => {
let pre: u8 = pre.into();
let pre = 1 << (pre as u32 - 7);
sys_clk / pre
}
};
let ahb_freq = sys_clk / config.ahb_pre;
let (apb1_freq, apb1_tim_freq) = match config.apb1_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: u8 = pre.into();
let pre: u8 = 1 << (pre - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
let (apb2_freq, apb2_tim_freq) = match config.apb2_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: u8 = pre.into();
let pre: u8 = 1 << (pre - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
let (apb3_freq, _apb3_tim_freq) = match config.apb3_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let pre: u8 = pre.into();
let pre: u8 = 1 << (pre - 3);
let freq = ahb_freq / pre as u32;
(freq, freq * 2)
let freq = ahb_freq / pre;
(freq, freq * 2u32)
}
};
set_freqs(Clocks {
sys: Hertz(sys_clk),
ahb1: Hertz(ahb_freq),
ahb2: Hertz(ahb_freq),
ahb3: Hertz(ahb_freq),
apb1: Hertz(apb1_freq),
apb2: Hertz(apb2_freq),
apb3: Hertz(apb3_freq),
apb1_tim: Hertz(apb1_tim_freq),
apb2_tim: Hertz(apb2_tim_freq),
sys: sys_clk,
ahb1: ahb_freq,
ahb2: ahb_freq,
ahb3: ahb_freq,
apb1: apb1_freq,
apb2: apb2_freq,
apb3: apb3_freq,
apb1_tim: apb1_tim_freq,
apb2_tim: apb2_tim_freq,
});
}
fn msirange_to_hertz(range: Msirange) -> Hertz {
match range {
Msirange::RANGE_48MHZ => Hertz(48_000_000),
Msirange::RANGE_24MHZ => Hertz(24_000_000),
Msirange::RANGE_16MHZ => Hertz(16_000_000),
Msirange::RANGE_12MHZ => Hertz(12_000_000),
Msirange::RANGE_4MHZ => Hertz(4_000_000),
Msirange::RANGE_2MHZ => Hertz(2_000_000),
Msirange::RANGE_1_33MHZ => Hertz(1_330_000),
Msirange::RANGE_1MHZ => Hertz(1_000_000),
Msirange::RANGE_3_072MHZ => Hertz(3_072_000),
Msirange::RANGE_1_536MHZ => Hertz(1_536_000),
Msirange::RANGE_1_024MHZ => Hertz(1_024_000),
Msirange::RANGE_768KHZ => Hertz(768_000),
Msirange::RANGE_400KHZ => Hertz(400_000),
Msirange::RANGE_200KHZ => Hertz(200_000),
Msirange::RANGE_133KHZ => Hertz(133_000),
Msirange::RANGE_100KHZ => Hertz(100_000),
}
}

View File

@ -1,4 +1,4 @@
pub use super::bus::{AHBPrescaler, APBPrescaler};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
use crate::rcc::bd::{BackupDomain, RtcClockSource};
use crate::rcc::Clocks;
use crate::time::{khz, mhz, Hertz};

View File

@ -1,6 +1,6 @@
pub use super::bus::{AHBPrescaler, APBPrescaler};
pub use crate::pac::pwr::vals::Vos as VoltageScale;
use crate::pac::rcc::vals::Adcsel;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Ppre as APBPrescaler};
use crate::pac::{FLASH, RCC};
use crate::rcc::bd::{BackupDomain, RtcClockSource};
use crate::rcc::{set_freqs, Clocks};

View File

@ -7,7 +7,7 @@ use core::convert::TryFrom;
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::rcc::{
APBPrescaler, ClockSrc, HSEConfig, HSESrc, PLL48Div, PLLConfig, PLLMainDiv, PLLMul, PLLPreDiv, PLLSrc,
APBPrescaler, ClockSrc, HSEConfig, HSESrc, PLLConfig, PLLMul, PLLPDiv, PLLPreDiv, PLLQDiv, PLLSrc,
};
use embassy_stm32::time::Hertz;
use embassy_stm32::Config;
@ -32,9 +32,9 @@ async fn main(_spawner: Spawner) {
// 1 MHz PLL input * 240 = 240 MHz PLL VCO
mul: unwrap!(PLLMul::try_from(240)),
// 240 MHz PLL VCO / 2 = 120 MHz main PLL output
main_div: PLLMainDiv::Div2,
p_div: PLLPDiv::DIV2,
// 240 MHz PLL VCO / 5 = 48 MHz PLL48 output
pll48_div: unwrap!(PLL48Div::try_from(5)),
q_div: PLLQDiv::DIV5,
};
// System clock comes from PLL (= the 120 MHz main PLL output)
config.rcc.mux = ClockSrc::PLL;

View File

@ -16,12 +16,12 @@ async fn main(_spawner: Spawner) {
config.rcc.pll = Some(Pll {
source: PllSrc::HSI16,
prediv_m: PllM::Div4,
mul_n: PllN::Mul85,
prediv_m: PllM::DIV4,
mul_n: PllN::MUL85,
div_p: None,
div_q: None,
// Main system clock at 170 MHz
div_r: Some(PllR::Div2),
div_r: Some(PllR::DIV2),
});
config.rcc.adc12_clock_source = AdcClockSource::SysClk;

View File

@ -15,12 +15,12 @@ async fn main(_spawner: Spawner) {
config.rcc.pll = Some(Pll {
source: PllSrc::HSI16,
prediv_m: PllM::Div4,
mul_n: PllN::Mul85,
prediv_m: PllM::DIV4,
mul_n: PllN::MUL85,
div_p: None,
div_q: None,
// Main system clock at 170 MHz
div_r: Some(PllR::Div2),
div_r: Some(PllR::DIV2),
});
config.rcc.mux = ClockSrc::PLL;

View File

@ -25,16 +25,16 @@ async fn main(_spawner: Spawner) {
// Change this to `false` to use the HSE clock source for the USB. This example assumes an 8MHz HSE.
const USE_HSI48: bool = true;
let pllq_div = if USE_HSI48 { None } else { Some(PllQ::Div6) };
let pllq_div = if USE_HSI48 { None } else { Some(PllQ::DIV6) };
config.rcc.pll = Some(Pll {
source: PllSrc::HSE(Hertz(8_000_000)),
prediv_m: PllM::Div2,
mul_n: PllN::Mul72,
prediv_m: PllM::DIV2,
mul_n: PllN::MUL72,
div_p: None,
div_q: pllq_div,
// Main system clock at 144 MHz
div_r: Some(PllR::Div2),
div_r: Some(PllR::DIV2),
});
config.rcc.mux = ClockSrc::PLL;

View File

@ -9,7 +9,9 @@ use embassy_net::{Ipv4Address, Stack, StackResources};
use embassy_stm32::eth::generic_smi::GenericSMI;
use embassy_stm32::eth::{Ethernet, PacketQueue};
use embassy_stm32::peripherals::ETH;
use embassy_stm32::rcc::{AHBPrescaler, APBPrescaler, Hse, HseMode, Pll, PllSource, Sysclk, VoltageScale};
use embassy_stm32::rcc::{
AHBPrescaler, APBPrescaler, Hse, HseMode, Pll, PllDiv, PllMul, PllPreDiv, PllSource, Sysclk, VoltageScale,
};
use embassy_stm32::rng::Rng;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, eth, peripherals, rng, Config};
@ -42,10 +44,10 @@ async fn main(spawner: Spawner) -> ! {
});
config.rcc.pll1 = Some(Pll {
source: PllSource::Hse,
prediv: 2,
mul: 125,
divp: Some(2),
divq: Some(2),
prediv: PllPreDiv::DIV2,
mul: PllMul::MUL125,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV2),
divr: None,
});
config.rcc.ahb_pre = AHBPrescaler::DIV1;

View File

@ -4,7 +4,9 @@
use defmt::{panic, *};
use embassy_executor::Spawner;
use embassy_stm32::rcc::{AHBPrescaler, APBPrescaler, Hse, HseMode, Pll, PllSource, Sysclk, VoltageScale};
use embassy_stm32::rcc::{
AHBPrescaler, APBPrescaler, Hse, HseMode, Pll, PllDiv, PllMul, PllPreDiv, PllSource, Sysclk, VoltageScale,
};
use embassy_stm32::time::Hertz;
use embassy_stm32::usb::{Driver, Instance};
use embassy_stm32::{bind_interrupts, pac, peripherals, usb, Config};
@ -29,9 +31,9 @@ async fn main(_spawner: Spawner) {
});
config.rcc.pll1 = Some(Pll {
source: PllSource::Hse,
prediv: 2,
mul: 125,
divp: Some(2), // 250mhz
prediv: PllPreDiv::DIV2,
mul: PllMul::MUL125,
divp: Some(PllDiv::DIV2), // 250mhz
divq: None,
divr: None,
});

View File

@ -18,16 +18,16 @@ async fn main(_spawner: Spawner) {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // SPI1 cksel defaults to pll1_q
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // SPI1 cksel defaults to pll1_q
divr: None,
});
config.rcc.pll2 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(8), // 100mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV8), // 100mhz
divq: None,
divr: None,
});

View File

@ -32,10 +32,10 @@ async fn main(_spawner: Spawner) {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // 100mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // 100mhz
divr: None,
});
config.rcc.sys = Sysclk::Pll1P; // 400 Mhz

View File

@ -20,16 +20,16 @@ fn main() -> ! {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // SPI1 cksel defaults to pll1_q
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // 100mhz
divr: None,
});
config.rcc.pll2 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(8), // 100mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV8), // 100mhz
divq: None,
divr: None,
});

View File

@ -28,16 +28,16 @@ async fn main(spawner: Spawner) {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // SPI1 cksel defaults to pll1_q
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // 100mhz
divr: None,
});
config.rcc.pll2 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(8), // 100mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV8), // 100mhz
divq: None,
divr: None,
});

View File

@ -39,9 +39,9 @@ async fn main(spawner: Spawner) -> ! {
config.rcc.hsi48 = true; // needed for RNG
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: None,
divr: None,
});

View File

@ -40,9 +40,9 @@ async fn main(spawner: Spawner) -> ! {
config.rcc.hsi48 = true; // needed for RNG
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: None,
divr: None,
});

View File

@ -18,10 +18,10 @@ async fn main(_spawner: Spawner) {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // 100mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // 100mhz
divr: None,
});
config.rcc.sys = Sysclk::Pll1P; // 400 Mhz

View File

@ -22,10 +22,10 @@ async fn main(_spawner: Spawner) {
config.rcc.hsi48 = true; // needed for RNG
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // 100 Mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // 100mhz
divr: None,
});
config.rcc.sys = Sysclk::Pll1P; // 400 Mhz

View File

@ -21,9 +21,9 @@ async fn main(_spawner: Spawner) {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: None,
divr: None,
});

View File

@ -22,10 +22,10 @@ async fn main(_spawner: Spawner) -> ! {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(4), // default clock chosen by SDMMCSEL. 200 Mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV4), // default clock chosen by SDMMCSEL. 200 Mhz
divr: None,
});
config.rcc.sys = Sysclk::Pll1P; // 400 Mhz

View File

@ -44,10 +44,10 @@ fn main() -> ! {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(4), // used by SPI3. 100Mhz.
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // used by SPI3. 100Mhz.
divr: None,
});
config.rcc.sys = Sysclk::Pll1P; // 400 Mhz

View File

@ -40,10 +40,10 @@ fn main() -> ! {
config.rcc.csi = true;
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(4), // used by SPI3. 100Mhz.
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // used by SPI3. 100Mhz.
divr: None,
});
config.rcc.sys = Sysclk::Pll1P; // 400 Mhz

View File

@ -28,9 +28,9 @@ async fn main(_spawner: Spawner) {
config.rcc.hsi48 = true; // needed for USB
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: None,
divr: None,
});

View File

@ -4,7 +4,7 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::rcc::{ClockSrc, PLLClkDiv, PLLMul, PLLSource, PLLSrcDiv};
use embassy_stm32::rcc::{ClockSrc, PLLSource, PllMul, PllPreDiv, PllQDiv, PllRDiv};
use embassy_stm32::rng::Rng;
use embassy_stm32::{bind_interrupts, peripherals, rng, Config};
use {defmt_rtt as _, panic_probe as _};
@ -19,10 +19,10 @@ async fn main(_spawner: Spawner) {
// 72Mhz clock (16 / 1 * 18 / 4)
config.rcc.mux = ClockSrc::PLL(
PLLSource::HSI16,
PLLClkDiv::Div4,
PLLSrcDiv::Div1,
PLLMul::Mul18,
Some(PLLClkDiv::Div6), // 48Mhz (16 / 1 * 18 / 6)
PllRDiv::DIV4,
PllPreDiv::DIV1,
PllMul::MUL18,
Some(PllQDiv::DIV6), // 48Mhz (16 / 1 * 18 / 6)
);
let p = embassy_stm32::init(config);

View File

@ -5,7 +5,7 @@
use chrono::{NaiveDate, NaiveDateTime};
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::rcc::{self, ClockSrc, PLLClkDiv, PLLMul, PLLSource, PLLSrcDiv};
use embassy_stm32::rcc::{self, ClockSrc, PLLSource, PllMul, PllPreDiv, PllRDiv};
use embassy_stm32::rtc::{Rtc, RtcConfig};
use embassy_stm32::time::Hertz;
use embassy_stm32::Config;
@ -18,9 +18,9 @@ async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL(
PLLSource::HSE(Hertz::mhz(8)),
PLLClkDiv::Div2,
PLLSrcDiv::Div1,
PLLMul::Mul20,
PllRDiv::DIV2,
PllPreDiv::DIV1,
PllMul::MUL20,
None,
);
config.rcc.lse = Some(Hertz(32_768));

View File

@ -49,7 +49,7 @@ use embassy_net_adin1110::{self, Device, Runner, ADIN1110};
use embedded_hal_bus::spi::ExclusiveDevice;
use hal::gpio::Pull;
use hal::i2c::Config as I2C_Config;
use hal::rcc::{ClockSrc, PLLClkDiv, PLLMul, PLLSource, PLLSrcDiv};
use hal::rcc::{ClockSrc, PLLSource, PllMul, PllPreDiv, PllRDiv};
use hal::spi::{Config as SPI_Config, Spi};
use hal::time::Hertz;
@ -80,9 +80,9 @@ async fn main(spawner: Spawner) {
// 80MHz highest frequency for flash 0 wait.
config.rcc.mux = ClockSrc::PLL(
PLLSource::HSE(Hertz(8_000_000)),
PLLClkDiv::Div2,
PLLSrcDiv::Div1,
PLLMul::Mul20,
PllRDiv::DIV2,
PllPreDiv::DIV1,
PllMul::MUL20,
None,
);
config.rcc.hsi48 = true; // needed for rng

View File

@ -23,7 +23,7 @@ async fn main(_spawner: Spawner) {
info!("Hello World!");
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PLLClkDiv::Div2, PLLSrcDiv::Div1, PLLMul::Mul10, None);
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PllRDiv::DIV2, PllPreDiv::DIV1, PllMul::MUL10, None);
config.rcc.hsi48 = true;
let p = embassy_stm32::init(config);

View File

@ -4,7 +4,7 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::rcc::{ClockSrc, PLLClkDiv, PLLMul, PLLSource, PLLSrcDiv};
use embassy_stm32::rcc::{ClockSrc, PLLSource, PllMul, PllPreDiv, PllQDiv, PllRDiv};
use embassy_stm32::rng::Rng;
use embassy_stm32::{bind_interrupts, peripherals, rng, Config};
use {defmt_rtt as _, panic_probe as _};
@ -18,10 +18,10 @@ async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL(
PLLSource::HSI16,
PLLClkDiv::Div2,
PLLSrcDiv::Div1,
PLLMul::Mul8,
Some(PLLClkDiv::Div2),
PllRDiv::DIV2,
PllPreDiv::DIV1,
PllMul::MUL8,
Some(PllQDiv::DIV2),
);
let p = embassy_stm32::init(config);

View File

@ -45,7 +45,7 @@ async fn net_task(stack: &'static Stack<Device<'static, MTU>>) -> ! {
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PLLClkDiv::Div2, PLLSrcDiv::Div1, PLLMul::Mul10, None);
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PllRDiv::DIV2, PllPreDiv::DIV1, PllMul::MUL10, None);
config.rcc.hsi48 = true;
let p = embassy_stm32::init(config);

View File

@ -22,7 +22,7 @@ bind_interrupts!(struct Irqs {
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PLLClkDiv::Div2, PLLSrcDiv::Div1, PLLMul::Mul10, None);
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PllRDiv::DIV2, PllPreDiv::DIV1, PllMul::MUL10, None);
config.rcc.hsi48 = true;
let p = embassy_stm32::init(config);

View File

@ -20,7 +20,7 @@ bind_interrupts!(struct Irqs {
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PLLClkDiv::Div2, PLLSrcDiv::Div1, PLLMul::Mul10, None);
config.rcc.mux = ClockSrc::PLL(PLLSource::HSI16, PllRDiv::DIV2, PllPreDiv::DIV1, PllMul::MUL10, None);
config.rcc.hsi48 = true;
let p = embassy_stm32::init(config);

View File

@ -25,9 +25,9 @@ async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.rcc.mux = ClockSrc::PLL1R(PllConfig {
source: PllSrc::HSI16,
m: PllM::Div2,
n: PllN::Mul10,
r: PllClkDiv::NotDivided,
m: Pllm::DIV2,
n: Plln::MUL10,
r: Plldiv::DIV1,
});
//config.rcc.mux = ClockSrc::MSI(MSIRange::Range48mhz);
config.rcc.hsi48 = true;

View File

@ -202,9 +202,9 @@ pub fn config() -> Config {
// 1 MHz PLL input * 240 = 240 MHz PLL VCO
mul: unwrap!(PLLMul::try_from(240)),
// 240 MHz PLL VCO / 2 = 120 MHz main PLL output
main_div: PLLMainDiv::Div2,
p_div: PLLPDiv::DIV2,
// 240 MHz PLL VCO / 5 = 48 MHz PLL48 output
pll48_div: unwrap!(PLL48Div::try_from(5)),
q_div: PLLQDiv::DIV5,
};
// System clock comes from PLL (= the 120 MHz main PLL output)
config.rcc.mux = ClockSrc::PLL;
@ -239,10 +239,10 @@ pub fn config() -> Config {
});
config.rcc.pll1 = Some(Pll {
source: PllSource::Hse,
prediv: 2,
mul: 125,
divp: Some(2),
divq: Some(2),
prediv: PllPreDiv::DIV2,
mul: PllMul::MUL125,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV2),
divr: None,
});
config.rcc.ahb_pre = AHBPrescaler::DIV1;
@ -261,16 +261,16 @@ pub fn config() -> Config {
config.rcc.hsi48 = true; // needed for RNG
config.rcc.pll_src = PllSource::Hsi;
config.rcc.pll1 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(2),
divq: Some(8), // SPI1 cksel defaults to pll1_q
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // SPI1 cksel defaults to pll1_q
divr: None,
});
config.rcc.pll2 = Some(Pll {
prediv: 4,
mul: 50,
divp: Some(8), // 100mhz
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV8), // 100mhz
divq: None,
divr: None,
});
@ -290,10 +290,10 @@ pub fn config() -> Config {
config.rcc.mux = ClockSrc::PLL(
// 72Mhz clock (16 / 1 * 18 / 4)
PLLSource::HSI16,
PLLClkDiv::Div4,
PLLSrcDiv::Div1,
PLLMul::Mul18,
Some(PLLClkDiv::Div6), // 48Mhz (16 / 1 * 18 / 6)
PllRDiv::DIV4,
PllPreDiv::DIV1,
PllMul::MUL18,
Some(PllQDiv::DIV6), // 48Mhz (16 / 1 * 18 / 6)
);
}
@ -303,9 +303,9 @@ pub fn config() -> Config {
config.rcc.mux = ClockSrc::PLL(
// 110Mhz clock (16 / 4 * 55 / 2)
PLLSource::HSI16,
PLLClkDiv::Div2,
PLLSrcDiv::Div4,
PLLMul::Mul55,
PllRDiv::DIV2,
PllPreDiv::DIV4,
PllMul::MUL55,
None,
);
}
@ -313,7 +313,7 @@ pub fn config() -> Config {
#[cfg(feature = "stm32u585ai")]
{
use embassy_stm32::rcc::*;
config.rcc.mux = ClockSrc::MSI(MSIRange::Range48mhz);
config.rcc.mux = ClockSrc::MSI(Msirange::RANGE_48MHZ);
}
#[cfg(feature = "stm32l073rz")]