Add support for USB classes handling control requests.

This commit is contained in:
alexmoon 2022-03-25 16:46:14 -04:00 committed by Dario Nieuwenhuis
parent 5c0db627fe
commit bdc6e0481c
8 changed files with 703 additions and 291 deletions

View File

@ -9,6 +9,7 @@ use embassy::time::{with_timeout, Duration};
use embassy::util::Unborrow;
use embassy::waitqueue::AtomicWaker;
use embassy_hal_common::unborrow;
use embassy_usb::control::Request;
use embassy_usb::driver::{self, Event, ReadError, WriteError};
use embassy_usb::types::{EndpointAddress, EndpointInfo, EndpointType, UsbDirection};
use futures::future::poll_fn;
@ -134,6 +135,7 @@ impl<'d, T: Instance> Driver<'d, T> {
impl<'d, T: Instance> driver::Driver<'d> for Driver<'d, T> {
type EndpointOut = Endpoint<'d, T, Out>;
type EndpointIn = Endpoint<'d, T, In>;
type ControlPipe = ControlPipe<'d, T>;
type Bus = Bus<'d, T>;
fn alloc_endpoint_in(
@ -174,6 +176,19 @@ impl<'d, T: Instance> driver::Driver<'d> for Driver<'d, T> {
}))
}
fn alloc_control_pipe(
&mut self,
max_packet_size: u16,
) -> Result<Self::ControlPipe, driver::EndpointAllocError> {
self.alloc_endpoint_out(Some(0x00.into()), EndpointType::Control, max_packet_size, 0)?;
self.alloc_endpoint_in(Some(0x80.into()), EndpointType::Control, max_packet_size, 0)?;
Ok(ControlPipe {
_phantom: PhantomData,
max_packet_size,
request: None,
})
}
fn enable(self) -> Self::Bus {
let regs = T::regs();
@ -344,49 +359,94 @@ impl<'d, T: Instance, Dir> driver::Endpoint for Endpoint<'d, T, Dir> {
}
}
unsafe fn read_dma<T: Instance>(i: usize, buf: &mut [u8]) -> Result<usize, ReadError> {
let regs = T::regs();
// Check that the packet fits into the buffer
let size = regs.size.epout[0].read().bits() as usize;
if size > buf.len() {
return Err(ReadError::BufferOverflow);
}
if i == 0 {
regs.events_ep0datadone.reset();
}
let epout = [
&regs.epout0,
&regs.epout1,
&regs.epout2,
&regs.epout3,
&regs.epout4,
&regs.epout5,
&regs.epout6,
&regs.epout7,
];
epout[i].ptr.write(|w| w.bits(buf.as_ptr() as u32));
// MAXCNT must match SIZE
epout[i].maxcnt.write(|w| w.bits(size as u32));
dma_start();
regs.events_endepout[i].reset();
regs.tasks_startepout[i].write(|w| w.tasks_startepout().set_bit());
while regs.events_endepout[i]
.read()
.events_endepout()
.bit_is_clear()
{}
regs.events_endepout[i].reset();
dma_end();
regs.size.epout[i].reset();
Ok(size)
}
unsafe fn write_dma<T: Instance>(i: usize, buf: &[u8]) -> Result<(), WriteError> {
let regs = T::regs();
if buf.len() > 64 {
return Err(WriteError::BufferOverflow);
}
// EasyDMA can't read FLASH, so we copy through RAM
let mut ram_buf: MaybeUninit<[u8; 64]> = MaybeUninit::uninit();
let ptr = ram_buf.as_mut_ptr() as *mut u8;
core::ptr::copy_nonoverlapping(buf.as_ptr(), ptr, buf.len());
let epin = [
&regs.epin0,
&regs.epin1,
&regs.epin2,
&regs.epin3,
&regs.epin4,
&regs.epin5,
&regs.epin6,
&regs.epin7,
];
// Set the buffer length so the right number of bytes are transmitted.
// Safety: `buf.len()` has been checked to be <= the max buffer length.
epin[i].ptr.write(|w| w.bits(ptr as u32));
epin[i].maxcnt.write(|w| w.maxcnt().bits(buf.len() as u8));
regs.events_endepin[i].reset();
dma_start();
regs.tasks_startepin[i].write(|w| w.bits(1));
while regs.events_endepin[i].read().bits() == 0 {}
dma_end();
Ok(())
}
impl<'d, T: Instance> driver::EndpointOut for Endpoint<'d, T, Out> {
type ReadFuture<'a> = impl Future<Output = Result<usize, ReadError>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let regs = T::regs();
let i = self.info.addr.index();
assert!(i != 0);
if i == 0 {
if buf.len() == 0 {
regs.tasks_ep0status.write(|w| unsafe { w.bits(1) });
return Ok(0);
}
// Wait for SETUP packet
regs.events_ep0setup.reset();
regs.intenset.write(|w| w.ep0setup().set());
poll_fn(|cx| {
EP_OUT_WAKERS[0].register(cx.waker());
let regs = T::regs();
if regs.events_ep0setup.read().bits() != 0 {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
if buf.len() < 8 {
return Err(ReadError::BufferOverflow);
}
buf[0] = regs.bmrequesttype.read().bits() as u8;
buf[1] = regs.brequest.read().brequest().bits();
buf[2] = regs.wvaluel.read().wvaluel().bits();
buf[3] = regs.wvalueh.read().wvalueh().bits();
buf[4] = regs.windexl.read().windexl().bits();
buf[5] = regs.windexh.read().windexh().bits();
buf[6] = regs.wlengthl.read().wlengthl().bits();
buf[7] = regs.wlengthh.read().wlengthh().bits();
Ok(8)
} else {
// Wait until ready
poll_fn(|cx| {
EP_OUT_WAKERS[i].register(cx.waker());
@ -402,41 +462,7 @@ impl<'d, T: Instance> driver::EndpointOut for Endpoint<'d, T, Out> {
// Mark as not ready
READY_ENDPOINTS.fetch_and(!(1 << (i + 16)), Ordering::AcqRel);
// Check that the packet fits into the buffer
let size = regs.size.epout[i].read().bits();
if size as usize > buf.len() {
return Err(ReadError::BufferOverflow);
}
let epout = [
&regs.epout0,
&regs.epout1,
&regs.epout2,
&regs.epout3,
&regs.epout4,
&regs.epout5,
&regs.epout6,
&regs.epout7,
];
epout[i]
.ptr
.write(|w| unsafe { w.bits(buf.as_ptr() as u32) });
// MAXCNT must match SIZE
epout[i].maxcnt.write(|w| unsafe { w.bits(size) });
dma_start();
regs.events_endepout[i].reset();
regs.tasks_startepout[i].write(|w| w.tasks_startepout().set_bit());
while regs.events_endepout[i]
.read()
.events_endepout()
.bit_is_clear()
{}
regs.events_endepout[i].reset();
dma_end();
Ok(size as usize)
}
unsafe { read_dma::<T>(i, buf) }
}
}
}
@ -446,11 +472,10 @@ impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> {
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
let regs = T::regs();
let i = self.info.addr.index();
assert!(i != 0);
// Wait until ready.
if i != 0 {
poll_fn(|cx| {
EP_IN_WAKERS[i].register(cx.waker());
let r = READY_ENDPOINTS.load(Ordering::Acquire);
@ -464,45 +489,29 @@ impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> {
// Mark as not ready
READY_ENDPOINTS.fetch_and(!(1 << i), Ordering::AcqRel);
unsafe { write_dma::<T>(i, buf) }
}
}
}
if i == 0 {
pub struct ControlPipe<'d, T: Instance> {
_phantom: PhantomData<&'d mut T>,
max_packet_size: u16,
request: Option<Request>,
}
impl<'d, T: Instance> ControlPipe<'d, T> {
async fn write(&mut self, buf: &[u8], last_chunk: bool) {
let regs = T::regs();
regs.events_ep0datadone.reset();
}
assert!(buf.len() <= 64);
// EasyDMA can't read FLASH, so we copy through RAM
let mut ram_buf: MaybeUninit<[u8; 64]> = MaybeUninit::uninit();
let ptr = ram_buf.as_mut_ptr() as *mut u8;
unsafe { core::ptr::copy_nonoverlapping(buf.as_ptr(), ptr, buf.len()) };
let epin = [
&regs.epin0,
&regs.epin1,
&regs.epin2,
&regs.epin3,
&regs.epin4,
&regs.epin5,
&regs.epin6,
&regs.epin7,
];
// Set the buffer length so the right number of bytes are transmitted.
// Safety: `buf.len()` has been checked to be <= the max buffer length.
unsafe {
epin[i].ptr.write(|w| w.bits(ptr as u32));
epin[i].maxcnt.write(|w| w.maxcnt().bits(buf.len() as u8));
write_dma::<T>(0, buf).unwrap();
}
regs.events_endepin[i].reset();
regs.shorts
.modify(|_, w| w.ep0datadone_ep0status().bit(last_chunk));
dma_start();
regs.tasks_startepin[i].write(|w| unsafe { w.bits(1) });
while regs.events_endepin[i].read().bits() == 0 {}
dma_end();
if i == 0 {
regs.intenset.write(|w| w.ep0datadone().set());
let res = with_timeout(
Duration::from_millis(10),
@ -519,13 +528,124 @@ impl<'d, T: Instance> driver::EndpointIn for Endpoint<'d, T, In> {
.await;
if res.is_err() {
// todo wrong error
return Err(driver::WriteError::BufferOverflow);
error!("ControlPipe::write timed out.");
}
}
}
Ok(())
impl<'d, T: Instance> driver::ControlPipe for ControlPipe<'d, T> {
type SetupFuture<'a> = impl Future<Output = Request> + 'a where Self: 'a;
type DataOutFuture<'a> = impl Future<Output = Result<usize, ReadError>> + 'a where Self: 'a;
type AcceptInFuture<'a> = impl Future<Output = ()> + 'a where Self: 'a;
fn setup<'a>(&'a mut self) -> Self::SetupFuture<'a> {
async move {
assert!(self.request.is_none());
let regs = T::regs();
// Wait for SETUP packet
regs.intenset.write(|w| w.ep0setup().set());
poll_fn(|cx| {
EP_OUT_WAKERS[0].register(cx.waker());
let regs = T::regs();
if regs.events_ep0setup.read().bits() != 0 {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// Reset shorts
regs.shorts
.modify(|_, w| w.ep0datadone_ep0status().clear_bit());
regs.events_ep0setup.reset();
let mut buf = [0; 8];
buf[0] = regs.bmrequesttype.read().bits() as u8;
buf[1] = regs.brequest.read().brequest().bits();
buf[2] = regs.wvaluel.read().wvaluel().bits();
buf[3] = regs.wvalueh.read().wvalueh().bits();
buf[4] = regs.windexl.read().windexl().bits();
buf[5] = regs.windexh.read().windexh().bits();
buf[6] = regs.wlengthl.read().wlengthl().bits();
buf[7] = regs.wlengthh.read().wlengthh().bits();
let req = Request::parse(&buf);
if req.direction == UsbDirection::Out {
regs.tasks_ep0rcvout
.write(|w| w.tasks_ep0rcvout().set_bit());
}
self.request = Some(req);
req
}
}
fn data_out<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::DataOutFuture<'a> {
async move {
let req = self.request.unwrap();
assert_eq!(req.direction, UsbDirection::Out);
assert!(req.length > 0);
assert!(buf.len() >= usize::from(req.length));
let regs = T::regs();
// Wait until ready
regs.intenset.write(|w| w.ep0datadone().set());
poll_fn(|cx| {
EP_OUT_WAKERS[0].register(cx.waker());
let regs = T::regs();
if regs
.events_ep0datadone
.read()
.events_ep0datadone()
.bit_is_set()
{
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
unsafe { read_dma::<T>(0, buf) }
}
}
fn accept(&mut self) {
let regs = T::regs();
regs.tasks_ep0status
.write(|w| w.tasks_ep0status().bit(true));
self.request = None;
}
fn accept_in<'a>(&'a mut self, buf: &'a [u8]) -> Self::AcceptInFuture<'a> {
async move {
info!("control accept {=[u8]:x}", buf);
let req = self.request.unwrap();
assert_eq!(req.direction, UsbDirection::In);
let req_len = usize::from(req.length);
let len = buf.len().min(req_len);
let need_zlp = len != req_len && (len % usize::from(self.max_packet_size)) == 0;
let mut chunks = buf[0..len]
.chunks(usize::from(self.max_packet_size))
.chain(need_zlp.then(|| -> &[u8] { &[] }));
while let Some(chunk) = chunks.next() {
self.write(chunk, chunks.size_hint().0 == 0).await;
}
self.request = None;
}
}
fn reject(&mut self) {
let regs = T::regs();
regs.tasks_ep0stall.write(|w| w.tasks_ep0stall().bit(true));
self.request = None;
}
}

View File

@ -1,3 +1,4 @@
use super::class::UsbClass;
use super::descriptor::{BosWriter, DescriptorWriter};
use super::driver::{Driver, EndpointAllocError};
use super::types::*;
@ -174,7 +175,10 @@ impl<'d, D: Driver<'d>> UsbDeviceBuilder<'d, D> {
}
/// Creates the [`UsbDevice`] instance with the configuration in this builder.
pub fn build(mut self) -> UsbDevice<'d, D> {
///
/// If a device has mutliple [`UsbClass`]es, they can be provided as a tuple list:
/// `(class1, (class2, (class3, ()))`.
pub fn build<C: UsbClass<'d, D>>(mut self, classes: C) -> UsbDevice<'d, D, C> {
self.config_descriptor.end_configuration();
self.bos_descriptor.end_bos();
@ -184,6 +188,7 @@ impl<'d, D: Driver<'d>> UsbDeviceBuilder<'d, D> {
self.device_descriptor.into_buf(),
self.config_descriptor.into_buf(),
self.bos_descriptor.writer.into_buf(),
classes,
)
}
@ -268,9 +273,10 @@ impl<'d, D: Driver<'d>> UsbDeviceBuilder<'d, D> {
/// Panics if endpoint allocation fails, because running out of endpoints or memory is not
/// feasibly recoverable.
#[inline]
pub fn alloc_control_endpoint_out(&mut self, max_packet_size: u16) -> D::EndpointOut {
self.alloc_endpoint_out(None, EndpointType::Control, max_packet_size, 0)
.expect("alloc_ep failed")
pub fn alloc_control_pipe(&mut self, max_packet_size: u16) -> D::ControlPipe {
self.bus
.alloc_control_pipe(max_packet_size)
.expect("alloc_control_pipe failed")
}
/// Allocates a bulk in endpoint.

190
embassy-usb/src/class.rs Normal file
View File

@ -0,0 +1,190 @@
use core::future::Future;
use crate::control::Request;
use crate::driver::{ControlPipe, Driver};
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RequestStatus {
Unhandled,
Accepted,
Rejected,
}
impl Default for RequestStatus {
fn default() -> Self {
RequestStatus::Unhandled
}
}
/// A trait for implementing USB classes.
///
/// All methods are optional callbacks that will be called by
/// [`UsbDevice::run()`](crate::UsbDevice::run)
pub trait UsbClass<'d, D: Driver<'d>> {
type ControlOutFuture<'a>: Future<Output = RequestStatus> + 'a
where
Self: 'a,
'd: 'a,
D: 'a;
type ControlInFuture<'a>: Future<Output = ControlInRequestStatus> + 'a
where
Self: 'a,
'd: 'a,
D: 'a;
/// Called after a USB reset after the bus reset sequence is complete.
fn reset(&mut self) {}
/// Called when a control request is received with direction HostToDevice.
///
/// All requests are passed to classes in turn, which can choose to accept, ignore or report an
/// error. Classes can even choose to override standard requests, but doing that is rarely
/// necessary.
///
/// When implementing your own class, you should ignore any requests that are not meant for your
/// class so that any other classes in the composite device can process them.
///
/// # Arguments
///
/// * `req` - The request from the SETUP packet.
/// * `data` - The data from the request.
fn control_out<'a>(&'a mut self, req: Request, data: &'a [u8]) -> Self::ControlOutFuture<'a>
where
'd: 'a,
D: 'a;
/// Called when a control request is received with direction DeviceToHost.
///
/// All requests are passed to classes in turn, which can choose to accept, ignore or report an
/// error. Classes can even choose to override standard requests, but doing that is rarely
/// necessary.
///
/// See [`ControlIn`] for how to respond to the transfer.
///
/// When implementing your own class, you should ignore any requests that are not meant for your
/// class so that any other classes in the composite device can process them.
///
/// # Arguments
///
/// * `req` - The request from the SETUP packet.
/// * `control` - The control pipe.
fn control_in<'a>(
&'a mut self,
req: Request,
control: ControlIn<'a, 'd, D>,
) -> Self::ControlInFuture<'a>
where
'd: 'a;
}
impl<'d, D: Driver<'d>> UsbClass<'d, D> for () {
type ControlOutFuture<'a> = impl Future<Output = RequestStatus> + 'a where Self: 'a, 'd: 'a, D: 'a;
type ControlInFuture<'a> = impl Future<Output = ControlInRequestStatus> + 'a where Self: 'a, 'd: 'a, D: 'a;
fn control_out<'a>(&'a mut self, _req: Request, _data: &'a [u8]) -> Self::ControlOutFuture<'a>
where
'd: 'a,
D: 'a,
{
async move { RequestStatus::default() }
}
fn control_in<'a>(
&'a mut self,
_req: Request,
control: ControlIn<'a, 'd, D>,
) -> Self::ControlInFuture<'a>
where
'd: 'a,
D: 'a,
{
async move { control.ignore() }
}
}
impl<'d, D: Driver<'d>, Head, Tail> UsbClass<'d, D> for (Head, Tail)
where
Head: UsbClass<'d, D>,
Tail: UsbClass<'d, D>,
{
type ControlOutFuture<'a> = impl Future<Output = RequestStatus> + 'a where Self: 'a, 'd: 'a, D: 'a;
type ControlInFuture<'a> = impl Future<Output = ControlInRequestStatus> + 'a where Self: 'a, 'd: 'a, D: 'a;
fn control_out<'a>(&'a mut self, req: Request, data: &'a [u8]) -> Self::ControlOutFuture<'a>
where
'd: 'a,
D: 'a,
{
async move {
match self.0.control_out(req, data).await {
RequestStatus::Unhandled => self.1.control_out(req, data).await,
status => status,
}
}
}
fn control_in<'a>(
&'a mut self,
req: Request,
control: ControlIn<'a, 'd, D>,
) -> Self::ControlInFuture<'a>
where
'd: 'a,
{
async move {
match self
.0
.control_in(req, ControlIn::new(control.control))
.await
{
ControlInRequestStatus(RequestStatus::Unhandled) => {
self.1.control_in(req, control).await
}
status => status,
}
}
}
}
/// Handle for a control IN transfer. When implementing a class, use the methods of this object to
/// response to the transfer with either data or an error (STALL condition). To ignore the request
/// and pass it on to the next class, call [`Self::ignore()`].
pub struct ControlIn<'a, 'd: 'a, D: Driver<'d>> {
control: &'a mut D::ControlPipe,
}
#[derive(Eq, PartialEq, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct ControlInRequestStatus(pub(crate) RequestStatus);
impl ControlInRequestStatus {
pub fn status(self) -> RequestStatus {
self.0
}
}
impl<'a, 'd: 'a, D: Driver<'d>> ControlIn<'a, 'd, D> {
pub(crate) fn new(control: &'a mut D::ControlPipe) -> Self {
ControlIn { control }
}
/// Ignores the request and leaves it unhandled.
pub fn ignore(self) -> ControlInRequestStatus {
ControlInRequestStatus(RequestStatus::Unhandled)
}
/// Accepts the transfer with the supplied buffer.
pub async fn accept(self, data: &[u8]) -> ControlInRequestStatus {
self.control.accept_in(data).await;
ControlInRequestStatus(RequestStatus::Accepted)
}
/// Rejects the transfer by stalling the pipe.
pub fn reject(self) -> ControlInRequestStatus {
self.control.reject();
ControlInRequestStatus(RequestStatus::Rejected)
}
}

View File

@ -2,12 +2,6 @@ use core::mem;
use super::types::*;
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ParseError {
InvalidLength,
}
/// Control request type.
#[repr(u8)]
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
@ -104,15 +98,12 @@ impl Request {
/// Standard USB feature Device Remote Wakeup for Set/Clear Feature
pub const FEATURE_DEVICE_REMOTE_WAKEUP: u16 = 1;
pub(crate) fn parse(buf: &[u8]) -> Result<Request, ParseError> {
if buf.len() != 8 {
return Err(ParseError::InvalidLength);
}
/// Parses a USB control request from a byte array.
pub fn parse(buf: &[u8; 8]) -> Request {
let rt = buf[0];
let recipient = rt & 0b11111;
Ok(Request {
Request {
direction: rt.into(),
request_type: unsafe { mem::transmute((rt >> 5) & 0b11) },
recipient: if recipient <= 3 {
@ -124,7 +115,7 @@ impl Request {
value: (buf[2] as u16) | ((buf[3] as u16) << 8),
index: (buf[4] as u16) | ((buf[5] as u16) << 8),
length: (buf[6] as u16) | ((buf[7] as u16) << 8),
})
}
}
/// Gets the descriptor type and index from the value field of a GET_DESCRIPTOR request.

View File

@ -1,5 +1,7 @@
use core::future::Future;
use crate::control::Request;
use super::types::*;
/// Driver for a specific USB peripheral. Implement this to add support for a new hardware
@ -7,6 +9,7 @@ use super::types::*;
pub trait Driver<'a> {
type EndpointOut: EndpointOut + 'a;
type EndpointIn: EndpointIn + 'a;
type ControlPipe: ControlPipe + 'a;
type Bus: Bus + 'a;
/// Allocates an endpoint and specified endpoint parameters. This method is called by the device
@ -36,6 +39,11 @@ pub trait Driver<'a> {
interval: u8,
) -> Result<Self::EndpointIn, EndpointAllocError>;
fn alloc_control_pipe(
&mut self,
max_packet_size: u16,
) -> Result<Self::ControlPipe, EndpointAllocError>;
/// Enables and initializes the USB peripheral. Soon after enabling the device will be reset, so
/// there is no need to perform a USB reset in this method.
fn enable(self) -> Self::Bus;
@ -122,6 +130,40 @@ pub trait EndpointOut: Endpoint {
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a>;
}
pub trait ControlPipe {
type SetupFuture<'a>: Future<Output = Request> + 'a
where
Self: 'a;
type DataOutFuture<'a>: Future<Output = Result<usize, ReadError>> + 'a
where
Self: 'a;
type AcceptInFuture<'a>: Future<Output = ()> + 'a
where
Self: 'a;
/// Reads a single setup packet from the endpoint.
fn setup<'a>(&'a mut self) -> Self::SetupFuture<'a>;
/// Reads the data packet of a control write sequence.
///
/// Must be called after `setup()` for requests with `direction` of `Out`
/// and `length` greater than zero.
///
/// `buf.len()` must be greater than or equal to the request's `length`.
fn data_out<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::DataOutFuture<'a>;
/// Accepts a control request.
fn accept(&mut self);
/// Accepts a control read request with `data`.
///
/// `data.len()` must be less than or equal to the request's `length`.
fn accept_in<'a>(&'a mut self, data: &'a [u8]) -> Self::AcceptInFuture<'a>;
/// Rejects a control request.
fn reject(&mut self);
}
pub trait EndpointIn: Endpoint {
type WriteFuture<'a>: Future<Output = Result<(), WriteError>> + 'a
where

View File

@ -1,16 +1,19 @@
#![no_std]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
mod builder;
mod control;
pub mod class;
pub mod control;
pub mod descriptor;
pub mod driver;
pub mod types;
mod util;
use self::class::{RequestStatus, UsbClass};
use self::control::*;
use self::descriptor::*;
use self::driver::*;
@ -48,10 +51,9 @@ pub const CONFIGURATION_VALUE: u8 = 1;
/// The default value for bAlternateSetting for all interfaces.
pub const DEFAULT_ALTERNATE_SETTING: u8 = 0;
pub struct UsbDevice<'d, D: Driver<'d>> {
pub struct UsbDevice<'d, D: Driver<'d>, C: UsbClass<'d, D>> {
bus: D::Bus,
control_in: D::EndpointIn,
control_out: D::EndpointOut,
control: D::ControlPipe,
config: Config<'d>,
device_descriptor: &'d [u8],
@ -62,32 +64,21 @@ pub struct UsbDevice<'d, D: Driver<'d>> {
remote_wakeup_enabled: bool,
self_powered: bool,
pending_address: u8,
classes: C,
}
impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
impl<'d, D: Driver<'d>, C: UsbClass<'d, D>> UsbDevice<'d, D, C> {
pub(crate) fn build(
mut driver: D,
config: Config<'d>,
device_descriptor: &'d [u8],
config_descriptor: &'d [u8],
bos_descriptor: &'d [u8],
classes: C,
) -> Self {
let control_out = driver
.alloc_endpoint_out(
Some(0x00.into()),
EndpointType::Control,
config.max_packet_size_0 as u16,
0,
)
.expect("failed to alloc control endpoint");
let control_in = driver
.alloc_endpoint_in(
Some(0x80.into()),
EndpointType::Control,
config.max_packet_size_0 as u16,
0,
)
let control = driver
.alloc_control_pipe(config.max_packet_size_0 as u16)
.expect("failed to alloc control endpoint");
// Enable the USB bus.
@ -97,8 +88,7 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
Self {
bus: driver,
config,
control_in,
control_out,
control,
device_descriptor,
config_descriptor,
bos_descriptor,
@ -106,14 +96,13 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
remote_wakeup_enabled: false,
self_powered: false,
pending_address: 0,
classes,
}
}
pub async fn run(&mut self) {
let mut buf = [0; 8];
loop {
let control_fut = self.control_out.read(&mut buf);
let control_fut = self.control.setup();
let bus_fut = self.bus.poll();
match select(bus_fut, control_fut).await {
Either::Left(evt) => match evt {
@ -124,11 +113,7 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
self.remote_wakeup_enabled = false;
self.pending_address = 0;
// TODO
//self.control.reset();
//for cls in classes {
// cls.reset();
//}
self.classes.reset();
}
Event::Resume => {}
Event::Suspend => {
@ -136,16 +121,9 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
self.device_state = UsbDeviceState::Suspend;
}
},
Either::Right(n) => {
let n = n.unwrap();
assert_eq!(n, 8);
let req = Request::parse(&buf).unwrap();
Either::Right(req) => {
info!("control request: {:x}", req);
// Now that we have properly parsed the setup packet, ensure the end-point is no longer in
// a stalled state.
self.control_out.set_stalled(false);
match req.direction {
UsbDirection::In => self.handle_control_in(req).await,
UsbDirection::Out => self.handle_control_out(req).await,
@ -155,36 +133,6 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
}
}
async fn write_chunked(&mut self, data: &[u8]) -> Result<(), driver::WriteError> {
for c in data.chunks(8) {
self.control_in.write(c).await?;
}
if data.len() % 8 == 0 {
self.control_in.write(&[]).await?;
}
Ok(())
}
async fn control_out_accept(&mut self, req: Request) {
info!("control out accept");
// status phase
// todo: cleanup
self.control_out.read(&mut []).await.unwrap();
}
async fn control_in_accept(&mut self, req: Request, data: &[u8]) {
info!("control accept {:x}", data);
let len = data.len().min(req.length as _);
if let Err(e) = self.write_chunked(&data[..len]).await {
info!("write_chunked failed: {:?}", e);
}
// status phase
// todo: cleanup
self.control_out.read(&mut []).await.unwrap();
}
async fn control_in_accept_writer(
&mut self,
req: Request,
@ -193,17 +141,26 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
let mut buf = [0; 256];
let mut w = DescriptorWriter::new(&mut buf);
f(&mut w);
let pos = w.position();
self.control_in_accept(req, &buf[..pos]).await;
}
fn control_reject(&mut self, req: Request) {
info!("control reject");
self.control_out.set_stalled(true);
let pos = w.position().min(usize::from(req.length));
self.control.accept_in(&buf[..pos]).await;
}
async fn handle_control_out(&mut self, req: Request) {
// TODO actually read the data if there's an OUT data phase.
{
let mut buf = [0; 128];
let data = if req.length > 0 {
let size = self.control.data_out(&mut buf).await.unwrap();
&buf[0..size]
} else {
&[]
};
match self.classes.control_out(req, data).await {
RequestStatus::Accepted => return self.control.accept(),
RequestStatus::Rejected => return self.control.reject(),
RequestStatus::Unhandled => (),
}
}
const CONFIGURATION_NONE_U16: u16 = CONFIGURATION_NONE as u16;
const CONFIGURATION_VALUE_U16: u16 = CONFIGURATION_VALUE as u16;
@ -217,12 +174,12 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
Request::FEATURE_DEVICE_REMOTE_WAKEUP,
) => {
self.remote_wakeup_enabled = false;
self.control_out_accept(req).await;
self.control.accept();
}
(Recipient::Endpoint, Request::CLEAR_FEATURE, Request::FEATURE_ENDPOINT_HALT) => {
//self.bus.set_stalled(((req.index as u8) & 0x8f).into(), false);
self.control_out_accept(req).await;
self.control.accept();
}
(
@ -231,51 +188,61 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
Request::FEATURE_DEVICE_REMOTE_WAKEUP,
) => {
self.remote_wakeup_enabled = true;
self.control_out_accept(req).await;
self.control.accept();
}
(Recipient::Endpoint, Request::SET_FEATURE, Request::FEATURE_ENDPOINT_HALT) => {
self.bus
.set_stalled(((req.index as u8) & 0x8f).into(), true);
self.control_out_accept(req).await;
self.control.accept();
}
(Recipient::Device, Request::SET_ADDRESS, 1..=127) => {
self.pending_address = req.value as u8;
// on NRF the hardware auto-handles SET_ADDRESS.
self.control_out_accept(req).await;
self.control.accept();
}
(Recipient::Device, Request::SET_CONFIGURATION, CONFIGURATION_VALUE_U16) => {
self.device_state = UsbDeviceState::Configured;
self.control_out_accept(req).await;
self.control.accept();
}
(Recipient::Device, Request::SET_CONFIGURATION, CONFIGURATION_NONE_U16) => {
match self.device_state {
UsbDeviceState::Default => {
self.control_out_accept(req).await;
self.control.accept();
}
_ => {
self.device_state = UsbDeviceState::Addressed;
self.control_out_accept(req).await;
self.control.accept();
}
}
}
(Recipient::Interface, Request::SET_INTERFACE, DEFAULT_ALTERNATE_SETTING_U16) => {
// TODO: do something when alternate settings are implemented
self.control_out_accept(req).await;
self.control.accept();
}
_ => self.control_reject(req),
_ => self.control.reject(),
},
_ => self.control_reject(req),
_ => self.control.reject(),
}
}
async fn handle_control_in(&mut self, req: Request) {
match self
.classes
.control_in(req, class::ControlIn::new(&mut self.control))
.await
.status()
{
RequestStatus::Accepted | RequestStatus::Rejected => return,
RequestStatus::Unhandled => (),
}
match req.request_type {
RequestType::Standard => match (req.recipient, req.request) {
(Recipient::Device, Request::GET_STATUS) => {
@ -286,12 +253,12 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
if self.remote_wakeup_enabled {
status |= 0x0002;
}
self.control_in_accept(req, &status.to_le_bytes()).await;
self.control.accept_in(&status.to_le_bytes()).await;
}
(Recipient::Interface, Request::GET_STATUS) => {
let status: u16 = 0x0000;
self.control_in_accept(req, &status.to_le_bytes()).await;
self.control.accept_in(&status.to_le_bytes()).await;
}
(Recipient::Endpoint, Request::GET_STATUS) => {
@ -300,7 +267,7 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
if self.bus.is_stalled(ep_addr) {
status |= 0x0001;
}
self.control_in_accept(req, &status.to_le_bytes()).await;
self.control.accept_in(&status.to_le_bytes()).await;
}
(Recipient::Device, Request::GET_DESCRIPTOR) => {
@ -312,17 +279,17 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
UsbDeviceState::Configured => CONFIGURATION_VALUE,
_ => CONFIGURATION_NONE,
};
self.control_in_accept(req, &status.to_le_bytes()).await;
self.control.accept_in(&status.to_le_bytes()).await;
}
(Recipient::Interface, Request::GET_INTERFACE) => {
// TODO: change when alternate settings are implemented
let status = DEFAULT_ALTERNATE_SETTING;
self.control_in_accept(req, &status.to_le_bytes()).await;
self.control.accept_in(&status.to_le_bytes()).await;
}
_ => self.control_reject(req),
_ => self.control.reject(),
},
_ => self.control_reject(req),
_ => self.control.reject(),
}
}
@ -331,11 +298,9 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
let config = self.config.clone();
match dtype {
descriptor_type::BOS => self.control_in_accept(req, self.bos_descriptor).await,
descriptor_type::DEVICE => self.control_in_accept(req, self.device_descriptor).await,
descriptor_type::CONFIGURATION => {
self.control_in_accept(req, self.config_descriptor).await
}
descriptor_type::BOS => self.control.accept_in(self.bos_descriptor).await,
descriptor_type::DEVICE => self.control.accept_in(self.device_descriptor).await,
descriptor_type::CONFIGURATION => self.control.accept_in(self.config_descriptor).await,
descriptor_type::STRING => {
if index == 0 {
self.control_in_accept_writer(req, |w| {
@ -363,11 +328,11 @@ impl<'d, D: Driver<'d>> UsbDevice<'d, D> {
self.control_in_accept_writer(req, |w| w.string(s).unwrap())
.await;
} else {
self.control_reject(req)
self.control.reject()
}
}
}
_ => self.control_reject(req),
_ => self.control.reject(),
}
}
}

View File

@ -1,5 +1,8 @@
use core::convert::TryInto;
use core::future::Future;
use core::mem;
use defmt::info;
use embassy_usb::class::{ControlInRequestStatus, RequestStatus, UsbClass};
use embassy_usb::control::{self, Request};
use embassy_usb::driver::{Endpoint, EndpointIn, EndpointOut, ReadError, WriteError};
use embassy_usb::{driver::Driver, types::*, UsbDeviceBuilder};
@ -39,16 +42,107 @@ const REQ_SET_CONTROL_LINE_STATE: u8 = 0x22;
/// terminated with a short packet, even if the bulk endpoint is used for stream-like data.
pub struct CdcAcmClass<'d, D: Driver<'d>> {
// TODO not pub
pub comm_if: InterfaceNumber,
pub comm_ep: D::EndpointIn,
pub data_if: InterfaceNumber,
pub read_ep: D::EndpointOut,
pub write_ep: D::EndpointIn,
pub control: CdcAcmControl,
}
pub struct CdcAcmControl {
pub comm_if: InterfaceNumber,
pub line_coding: LineCoding,
pub dtr: bool,
pub rts: bool,
}
impl<'d, D: Driver<'d>> UsbClass<'d, D> for CdcAcmControl {
type ControlOutFuture<'a> = impl Future<Output = RequestStatus> + 'a where Self: 'a, 'd: 'a, D: 'a;
type ControlInFuture<'a> = impl Future<Output = ControlInRequestStatus> + 'a where Self: 'a, 'd: 'a, D: 'a;
fn reset(&mut self) {
self.line_coding = LineCoding::default();
self.dtr = false;
self.rts = false;
}
fn control_out<'a>(
&'a mut self,
req: control::Request,
data: &'a [u8],
) -> Self::ControlOutFuture<'a>
where
'd: 'a,
D: 'a,
{
async move {
if !(req.request_type == control::RequestType::Class
&& req.recipient == control::Recipient::Interface
&& req.index == u8::from(self.comm_if) as u16)
{
return RequestStatus::Unhandled;
}
match req.request {
REQ_SEND_ENCAPSULATED_COMMAND => {
// We don't actually support encapsulated commands but pretend we do for standards
// compatibility.
RequestStatus::Accepted
}
REQ_SET_LINE_CODING if data.len() >= 7 => {
self.line_coding.data_rate = u32::from_le_bytes(data[0..4].try_into().unwrap());
self.line_coding.stop_bits = data[4].into();
self.line_coding.parity_type = data[5].into();
self.line_coding.data_bits = data[6];
info!("Set line coding to: {:?}", self.line_coding);
RequestStatus::Accepted
}
REQ_SET_CONTROL_LINE_STATE => {
self.dtr = (req.value & 0x0001) != 0;
self.rts = (req.value & 0x0002) != 0;
info!("Set dtr {}, rts {}", self.dtr, self.rts);
RequestStatus::Accepted
}
_ => RequestStatus::Rejected,
}
}
}
fn control_in<'a>(
&'a mut self,
req: Request,
control: embassy_usb::class::ControlIn<'a, 'd, D>,
) -> Self::ControlInFuture<'a>
where
'd: 'a,
{
async move {
if !(req.request_type == control::RequestType::Class
&& req.recipient == control::Recipient::Interface
&& req.index == u8::from(self.comm_if) as u16)
{
return control.ignore();
}
match req.request {
// REQ_GET_ENCAPSULATED_COMMAND is not really supported - it will be rejected below.
REQ_GET_LINE_CODING if req.length == 7 => {
info!("Sending line coding");
let mut data = [0; 7];
data[0..4].copy_from_slice(&self.line_coding.data_rate.to_le_bytes());
data[4] = self.line_coding.stop_bits as u8;
data[5] = self.line_coding.parity_type as u8;
data[6] = self.line_coding.data_bits;
control.accept(&data).await
}
_ => control.reject(),
}
}
}
}
impl<'d, D: Driver<'d>> CdcAcmClass<'d, D> {
/// Creates a new CdcAcmClass with the provided UsbBus and max_packet_size in bytes. For
/// full-speed devices, max_packet_size has to be one of 8, 16, 32 or 64.
@ -133,19 +227,21 @@ impl<'d, D: Driver<'d>> CdcAcmClass<'d, D> {
builder.config_descriptor.endpoint(read_ep.info()).unwrap();
CdcAcmClass {
comm_if,
comm_ep,
data_if,
read_ep,
write_ep,
control: CdcAcmControl {
comm_if,
dtr: false,
rts: false,
line_coding: LineCoding {
stop_bits: StopBits::One,
data_bits: 8,
parity_type: ParityType::None,
data_rate: 8_000,
},
dtr: false,
rts: false,
},
}
}
@ -158,17 +254,17 @@ impl<'d, D: Driver<'d>> CdcAcmClass<'d, D> {
/// Gets the current line coding. The line coding contains information that's mainly relevant
/// for USB to UART serial port emulators, and can be ignored if not relevant.
pub fn line_coding(&self) -> &LineCoding {
&self.line_coding
&self.control.line_coding
}
/// Gets the DTR (data terminal ready) state
pub fn dtr(&self) -> bool {
self.dtr
self.control.dtr
}
/// Gets the RTS (request to send) state
pub fn rts(&self) -> bool {
self.rts
self.control.rts
}
/// Writes a single packet into the IN endpoint.
@ -270,7 +366,7 @@ impl<B: UsbBus> UsbClass<B> for CdcAcmClass<'_, B> {
*/
/// Number of stop bits for LineCoding
#[derive(Copy, Clone, PartialEq, Eq)]
#[derive(Copy, Clone, PartialEq, Eq, defmt::Format)]
pub enum StopBits {
/// 1 stop bit
One = 0,
@ -293,7 +389,7 @@ impl From<u8> for StopBits {
}
/// Parity for LineCoding
#[derive(Copy, Clone, PartialEq, Eq)]
#[derive(Copy, Clone, PartialEq, Eq, defmt::Format)]
pub enum ParityType {
None = 0,
Odd = 1,
@ -316,6 +412,7 @@ impl From<u8> for ParityType {
///
/// This is provided by the host for specifying the standard UART parameters such as baud rate. Can
/// be ignored if you don't plan to interface with a physical UART.
#[derive(defmt::Format)]
pub struct LineCoding {
stop_bits: StopBits,
data_bits: u8,

View File

@ -1,5 +1,6 @@
#![no_std]
#![no_main]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
#[path = "../../example_common.rs"]
@ -58,7 +59,7 @@ async fn main(_spawner: Spawner, p: Peripherals) {
let mut class = CdcAcmClass::new(&mut builder, 64);
// Build the builder.
let mut usb = builder.build();
let mut usb = builder.build(class.control);
// Run the USB device.
let fut1 = usb.run();