mirror of
https://github.com/embassy-rs/embassy.git
synced 2024-11-25 08:12:30 +00:00
Add blocking read & write for I2C
This commit is contained in:
parent
820e6462b6
commit
bcd3ab4ba1
@ -39,12 +39,15 @@ impl Default for Config {
|
||||
}
|
||||
}
|
||||
|
||||
const TX_FIFO_SIZE: u8 = 16;
|
||||
const RX_FIFO_SIZE: u8 = 16;
|
||||
|
||||
pub struct I2c<'d, T: Instance, M: Mode> {
|
||||
phantom: PhantomData<(&'d mut T, M)>,
|
||||
}
|
||||
|
||||
impl<'d, T: Instance> I2c<'d, T, Master> {
|
||||
pub fn new_master(
|
||||
impl<'d, T: Instance> I2c<'d, T, Blocking> {
|
||||
pub fn new_blocking(
|
||||
_peri: impl Peripheral<P = T> + 'd,
|
||||
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
|
||||
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
|
||||
@ -60,9 +63,10 @@ impl<'d, T: Instance> I2c<'d, T, Master> {
|
||||
unsafe {
|
||||
p.ic_enable().write(|w| w.set_enable(false));
|
||||
|
||||
// select controller mode & speed
|
||||
// Select controller mode & speed
|
||||
p.ic_con().write(|w| {
|
||||
// Always use "fast" mode (<= 400 kHz, works fine for standard mode too)
|
||||
// Always use "fast" mode (<= 400 kHz, works fine for standard
|
||||
// mode too)
|
||||
w.set_speed(i2c::vals::Speed::FAST);
|
||||
w.set_master_mode(true);
|
||||
w.set_ic_slave_disable(true);
|
||||
@ -70,7 +74,8 @@ impl<'d, T: Instance> I2c<'d, T, Master> {
|
||||
w.set_tx_empty_ctrl(true);
|
||||
});
|
||||
|
||||
// Clear FIFO threshold
|
||||
// Set FIFO watermarks to 1 to make things simpler. This is encoded
|
||||
// by a register value of 0.
|
||||
p.ic_tx_tl().write(|w| w.set_tx_tl(0));
|
||||
p.ic_rx_tl().write(|w| w.set_rx_tl(0));
|
||||
|
||||
@ -89,8 +94,9 @@ impl<'d, T: Instance> I2c<'d, T, Master> {
|
||||
|
||||
// Configure baudrate
|
||||
|
||||
// There are some subtleties to I2C timing which we are completely ignoring here
|
||||
// See: https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
|
||||
// There are some subtleties to I2C timing which we are completely
|
||||
// ignoring here See:
|
||||
// https://github.com/raspberrypi/pico-sdk/blob/bfcbefafc5d2a210551a4d9d80b4303d4ae0adf7/src/rp2_common/hardware_i2c/i2c.c#L69
|
||||
let clk_base = crate::clocks::clk_sys_freq();
|
||||
|
||||
let period = (clk_base + config.frequency / 2) / config.frequency;
|
||||
@ -104,21 +110,21 @@ impl<'d, T: Instance> I2c<'d, T, Master> {
|
||||
assert!(lcnt >= 8);
|
||||
|
||||
// Per I2C-bus specification a device in standard or fast mode must
|
||||
// internally provide a hold time of at least 300ns for the SDA signal to
|
||||
// bridge the undefined region of the falling edge of SCL. A smaller hold
|
||||
// time of 120ns is used for fast mode plus.
|
||||
// internally provide a hold time of at least 300ns for the SDA
|
||||
// signal to bridge the undefined region of the falling edge of SCL.
|
||||
// A smaller hold time of 120ns is used for fast mode plus.
|
||||
let sda_tx_hold_count = if config.frequency < 1_000_000 {
|
||||
// sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s / 1e9ns)
|
||||
// Reduce 300/1e9 to 3/1e7 to avoid numbers that don't fit in uint.
|
||||
// Add 1 to avoid division truncation.
|
||||
// sda_tx_hold_count = clk_base [cycles/s] * 300ns * (1s /
|
||||
// 1e9ns) Reduce 300/1e9 to 3/1e7 to avoid numbers that don't
|
||||
// fit in uint. Add 1 to avoid division truncation.
|
||||
((clk_base * 3) / 10_000_000) + 1
|
||||
} else {
|
||||
// fast mode plus requires a clk_base > 32MHz
|
||||
assert!(clk_base >= 32_000_000);
|
||||
|
||||
// sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s / 1e9ns)
|
||||
// Reduce 120/1e9 to 3/25e6 to avoid numbers that don't fit in uint.
|
||||
// Add 1 to avoid division truncation.
|
||||
// sda_tx_hold_count = clk_base [cycles/s] * 120ns * (1s /
|
||||
// 1e9ns) Reduce 120/1e9 to 3/25e6 to avoid numbers that don't
|
||||
// fit in uint. Add 1 to avoid division truncation.
|
||||
((clk_base * 3) / 25_000_000) + 1
|
||||
};
|
||||
assert!(sda_tx_hold_count <= lcnt - 2);
|
||||
@ -138,6 +144,266 @@ impl<'d, T: Instance> I2c<'d, T, Master> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, M: Mode> I2c<'d, T, M> {
|
||||
/// Number of bytes currently in the RX FIFO
|
||||
#[inline]
|
||||
pub fn rx_fifo_used(&self) -> u8 {
|
||||
unsafe { T::regs().ic_rxflr().read().rxflr() }
|
||||
}
|
||||
|
||||
/// Remaining capacity in the RX FIFO
|
||||
#[inline]
|
||||
pub fn rx_fifo_free(&self) -> u8 {
|
||||
RX_FIFO_SIZE - self.rx_fifo_used()
|
||||
}
|
||||
|
||||
/// RX FIFO is empty
|
||||
#[inline]
|
||||
pub fn rx_fifo_empty(&self) -> bool {
|
||||
self.rx_fifo_used() == 0
|
||||
}
|
||||
|
||||
/// Number of bytes currently in the TX FIFO
|
||||
#[inline]
|
||||
pub fn tx_fifo_used(&self) -> u8 {
|
||||
unsafe { T::regs().ic_txflr().read().txflr() }
|
||||
}
|
||||
|
||||
/// Remaining capacity in the TX FIFO
|
||||
#[inline]
|
||||
pub fn tx_fifo_free(&self) -> u8 {
|
||||
TX_FIFO_SIZE - self.tx_fifo_used()
|
||||
}
|
||||
|
||||
/// TX FIFO is at capacity
|
||||
#[inline]
|
||||
pub fn tx_fifo_full(&self) -> bool {
|
||||
self.tx_fifo_free() == 0
|
||||
}
|
||||
|
||||
fn setup(addr: u16) -> Result<(), Error> {
|
||||
if addr >= 0x80 {
|
||||
return Err(Error::AddressOutOfRange(addr));
|
||||
}
|
||||
|
||||
if i2c_reserved_addr(addr) {
|
||||
return Err(Error::AddressReserved(addr));
|
||||
}
|
||||
|
||||
let p = T::regs();
|
||||
unsafe {
|
||||
p.ic_enable().write(|w| w.set_enable(false));
|
||||
p.ic_tar().write(|w| w.set_ic_tar(addr));
|
||||
p.ic_enable().write(|w| w.set_enable(true));
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn read_and_clear_abort_reason(&mut self) -> Option<u32> {
|
||||
let p = T::regs();
|
||||
unsafe {
|
||||
let abort_reason = p.ic_tx_abrt_source().read().0;
|
||||
if abort_reason != 0 {
|
||||
// Note clearing the abort flag also clears the reason, and this
|
||||
// instance of flag is clear-on-read! Note also the
|
||||
// IC_CLR_TX_ABRT register always reads as 0.
|
||||
p.ic_clr_tx_abrt().read();
|
||||
Some(abort_reason)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
|
||||
if buffer.is_empty() {
|
||||
return Err(Error::InvalidReadBufferLength);
|
||||
}
|
||||
|
||||
let p = T::regs();
|
||||
let lastindex = buffer.len() - 1;
|
||||
for (i, byte) in buffer.iter_mut().enumerate() {
|
||||
let first = i == 0;
|
||||
let last = i == lastindex;
|
||||
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
// wait until there is space in the FIFO to write the next byte
|
||||
while self.tx_fifo_full() {}
|
||||
|
||||
p.ic_data_cmd().write(|w| {
|
||||
if restart && first {
|
||||
w.set_restart(true);
|
||||
} else {
|
||||
w.set_restart(false);
|
||||
}
|
||||
|
||||
if send_stop && last {
|
||||
w.set_stop(true);
|
||||
} else {
|
||||
w.set_stop(false);
|
||||
}
|
||||
|
||||
w.cmd()
|
||||
});
|
||||
|
||||
while p.ic_rxflr().read().rxflr() == 0 {
|
||||
if let Some(abort_reason) = self.read_and_clear_abort_reason() {
|
||||
return Err(Error::Abort(abort_reason));
|
||||
}
|
||||
}
|
||||
|
||||
*byte = p.ic_data_cmd().read().dat();
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
|
||||
if bytes.is_empty() {
|
||||
return Err(Error::InvalidWriteBufferLength);
|
||||
}
|
||||
|
||||
let p = T::regs();
|
||||
|
||||
for (i, byte) in bytes.iter().enumerate() {
|
||||
let last = i == bytes.len() - 1;
|
||||
|
||||
// NOTE(unsafe) We have &mut self
|
||||
unsafe {
|
||||
p.ic_data_cmd().write(|w| {
|
||||
if send_stop && last {
|
||||
w.set_stop(true);
|
||||
} else {
|
||||
w.set_stop(false);
|
||||
}
|
||||
w.set_dat(*byte);
|
||||
});
|
||||
|
||||
// Wait until the transmission of the address/data from the
|
||||
// internal shift register has completed. For this to function
|
||||
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
|
||||
// TX_EMPTY_CTRL flag was set in i2c_init.
|
||||
while !p.ic_raw_intr_stat().read().tx_empty() {}
|
||||
|
||||
let abort_reason = self.read_and_clear_abort_reason();
|
||||
|
||||
if abort_reason.is_some() || (send_stop && last) {
|
||||
// If the transaction was aborted or if it completed
|
||||
// successfully wait until the STOP condition has occured.
|
||||
|
||||
while !p.ic_raw_intr_stat().read().stop_det() {}
|
||||
|
||||
p.ic_clr_stop_det().read().clr_stop_det();
|
||||
}
|
||||
|
||||
// Note the hardware issues a STOP automatically on an abort
|
||||
// condition. Note also the hardware clears RX FIFO as well as
|
||||
// TX on abort, ecause we set hwparam
|
||||
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
|
||||
if let Some(abort_reason) = abort_reason {
|
||||
return Err(Error::Abort(abort_reason));
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// ========================= Blocking public API
|
||||
// =========================
|
||||
|
||||
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
|
||||
Self::setup(address.into())?;
|
||||
self.read_blocking_internal(buffer, false, true)
|
||||
// Automatic Stop
|
||||
}
|
||||
|
||||
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
|
||||
Self::setup(address.into())?;
|
||||
self.write_blocking_internal(bytes, true)
|
||||
}
|
||||
|
||||
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
|
||||
Self::setup(address.into())?;
|
||||
self.write_blocking_internal(bytes, false)?;
|
||||
self.read_blocking_internal(buffer, true, true)
|
||||
// Automatic Stop
|
||||
}
|
||||
}
|
||||
|
||||
// impl<'d, T: Instance> I2c<'d, T, Async> { // ========================= //
|
||||
// Async public API // =========================
|
||||
|
||||
// pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(),
|
||||
// Error> { if bytes.is_empty() { self.write_blocking_internal(address,
|
||||
// bytes, true) } else { self.write_dma_internal(address, bytes,
|
||||
// true, true).await } }
|
||||
|
||||
// pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) ->
|
||||
// Result<(), Error> { if bytes.is_empty() { return
|
||||
// Err(Error::ZeroLengthTransfer); } let mut iter = bytes.iter();
|
||||
|
||||
// let mut first = true; let mut current = iter.next(); while let
|
||||
// Some(c) = current { let next = iter.next(); let is_last =
|
||||
// next.is_none();
|
||||
|
||||
// self.write_dma_internal(address, c, first, is_last).await?;
|
||||
// first = false;
|
||||
// current = next;
|
||||
// } Ok(())
|
||||
// }
|
||||
|
||||
// pub async fn read(&mut self, address: u8, buffer: &mut [u8]) ->
|
||||
// Result<(), Error> { if buffer.is_empty() {
|
||||
// self.read_blocking_internal(address, buffer, false) } else {
|
||||
// self.read_dma_internal(address, buffer, false).await } }
|
||||
|
||||
// pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer:
|
||||
// &mut [u8]) -> Result<(), Error> { if bytes.is_empty() {
|
||||
// self.write_blocking_internal(address, bytes, false)?; } else {
|
||||
// self.write_dma_internal(address, bytes, true, true).await?; }
|
||||
|
||||
// if buffer.is_empty() { self.read_blocking_internal(address, buffer,
|
||||
// true)?; } else { self.read_dma_internal(address, buffer,
|
||||
// true).await?; }
|
||||
|
||||
// Ok(())
|
||||
// }
|
||||
// }
|
||||
|
||||
mod eh02 {
|
||||
use super::*;
|
||||
|
||||
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> {
|
||||
type Error = Error;
|
||||
|
||||
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
|
||||
self.blocking_read(address, buffer)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> {
|
||||
type Error = Error;
|
||||
|
||||
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
|
||||
self.blocking_write(address, bytes)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> {
|
||||
type Error = Error;
|
||||
|
||||
fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
|
||||
self.blocking_write_read(address, bytes, buffer)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn i2c_reserved_addr(addr: u16) -> bool {
|
||||
(addr & 0x78) == 0 || (addr & 0x78) == 0x78
|
||||
}
|
||||
|
||||
mod sealed {
|
||||
pub trait Instance {}
|
||||
pub trait Mode {}
|
||||
@ -155,11 +421,11 @@ macro_rules! impl_mode {
|
||||
};
|
||||
}
|
||||
|
||||
pub struct Master;
|
||||
pub struct Slave;
|
||||
pub struct Blocking;
|
||||
pub struct Async;
|
||||
|
||||
impl_mode!(Master);
|
||||
impl_mode!(Slave);
|
||||
impl_mode!(Blocking);
|
||||
impl_mode!(Async);
|
||||
|
||||
pub trait Instance: sealed::Instance {
|
||||
fn regs() -> pac::i2c::I2c;
|
||||
|
Loading…
Reference in New Issue
Block a user