Implement asynchronous transaction for I2C v1

This commit is contained in:
Sebastian Goll 2024-03-21 00:30:53 +01:00
parent 9c00a40e73
commit accec7a840
2 changed files with 123 additions and 95 deletions

View File

@ -332,8 +332,6 @@ impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c:
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
self.transaction(address, operations).await
}
}

View File

@ -111,12 +111,21 @@ impl FrameOptions {
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
fn operation_frames<'a, 'b: 'a>(
operations: &'a mut [Operation<'b>],
) -> impl IntoIterator<Item = (&'a mut Operation<'b>, FrameOptions)> {
) -> Result<impl IntoIterator<Item = (&'a mut Operation<'b>, FrameOptions)>, Error> {
// Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
// error in the middle of the transaction.
if operations.iter().any(|op| match op {
Operation::Read(read) => read.is_empty(),
Operation::Write(_) => false,
}) {
return Err(Error::Overrun);
}
let mut operations = operations.iter_mut().peekable();
let mut next_first_frame = true;
iter::from_fn(move || {
Ok(iter::from_fn(move || {
let Some(op) = operations.next() else {
return None;
};
@ -156,7 +165,7 @@ fn operation_frames<'a, 'b: 'a>(
};
Some((op, frame))
})
}))
}
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
@ -442,18 +451,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
// stop condition below.
if operations.iter().any(|op| match op {
Operation::Read(read) => read.is_empty(),
Operation::Write(_) => false,
}) {
return Err(Error::Overrun);
}
let timeout = self.timeout();
for (op, frame) in operation_frames(operations) {
for (op, frame) in operation_frames(operations)? {
match op {
Operation::Read(read) => self.blocking_read_timeout(addr, read, timeout, frame)?,
Operation::Write(write) => self.write_bytes(addr, write, timeout, frame)?,
@ -480,9 +480,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.
w.set_itbufen(false);
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
w.set_itbufen(false);
// Sending NACK is not necessary (nor possible) for write transfer.
w.set_last(false);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let dst = regs.dr().as_ptr() as *mut u8;
@ -520,6 +523,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
@ -537,6 +543,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
} else {
Poll::Ready(Ok(()))
@ -550,14 +559,14 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Self::enable_interrupts();
T::regs().dr().write(|reg| reg.set_dr(address << 1));
// Wait for the address to be acknowledged
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// Clear the ADDR condition by reading SR2.
T::regs().sr2().read();
Poll::Ready(Ok(()))
} else {
// If we need to go around, then re-enable the interrupts, otherwise nothing
@ -569,8 +578,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
})
.await?;
// Clear condition by reading SR2
T::regs().sr2().read();
}
// Wait for bytes to be sent, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
@ -579,7 +592,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other
// identical poll_fn check_and_clear matches.
Err(e) => Poll::Ready(Err::<T, Error>(e)),
Ok(_) => Poll::Pending,
Ok(_) => {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
});
@ -589,16 +607,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_ => Ok(()),
}?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
if frame.send_stop() {
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
@ -607,36 +624,23 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.btf() {
if frame.send_stop() {
Poll::Ready(Ok(()))
} else {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
}
})
.await?;
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
if frame.send_stop() {
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
T::state().waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
}
drop(on_drop);
// Fallthrough is success
@ -669,15 +673,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
where
RXDMA: crate::i2c::RxDma<T>,
{
let state = T::state();
let buffer_len = buffer.len();
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
// Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.
w.set_itbufen(false);
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
w.set_last(frame.send_nack() && buffer_len != 1);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
@ -696,6 +704,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
})
});
let state = T::state();
if frame.send_start() {
// Send a START condition and set ACK bit
Self::enable_interrupts();
@ -714,6 +724,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
@ -733,6 +746,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
} else {
Poll::Ready(Ok(()))
@ -743,11 +759,10 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
.await?;
// Set up current address, we're trying to talk to
Self::enable_interrupts();
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
@ -755,15 +770,11 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if buffer_len == 1 && frame.send_nack() {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
Poll::Ready(Ok(()))
} else {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
@ -771,24 +782,29 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
})
.await?;
// Clear ADDR condition by reading SR2
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if frame.send_nack() && buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
// Clear condition by reading SR2
T::regs().sr2().read();
} else if frame.send_nack() && buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
// 18.3.8: When a single byte must be received: [snip] Then the
// user can program the STOP condition either after clearing ADDR flag, or in the
// DMA Transfer Complete interrupt routine.
if buffer_len == 1 && frame.send_stop() {
if frame.send_stop() && buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
} else if buffer_len != 1 && frame.send_nack() {
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
T::regs().cr2().modify(|w| {
w.set_last(true);
});
}
// Wait for bytes to be received, or an error to occur.
@ -798,7 +814,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)),
_ => Poll::Pending,
_ => {
// If we need to go around, then re-enable the interrupts, otherwise nothing
// can wake us up and we'll hang.
Self::enable_interrupts();
Poll::Pending
}
}
});
@ -807,27 +828,16 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_ => Ok(()),
}?;
if frame.send_stop() {
if buffer_len != 1 {
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
if frame.send_stop() && buffer_len != 1 {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
}
// Wait for the STOP to be sent (STOP bit cleared).
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
}
drop(on_drop);
// Fallthrough is success
@ -843,6 +853,26 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
self.write_frame(address, write, FrameOptions::FirstFrame).await?;
self.read_frame(address, read, FrameOptions::FirstAndLastFrame).await
}
/// Transaction with operations.
///
/// Consecutive operations of same type are merged. See [transaction contract] for details.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
for (op, frame) in operation_frames(operations)? {
match op {
Operation::Read(read) => self.read_frame(addr, read, frame).await?,
Operation::Write(write) => self.write_frame(addr, write, frame).await?,
}
}
Ok(())
}
}
impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {