rp: add single-channel dma from adc

with uniform treatment of adc inputs it's easy enough to add a new
sampling method. dma sampling only supports one channel at the moment,
though round-robin sampling would be a simple extension (probably a new
trait that's implemented for Channel and &[Channel]). continuous dma as
proposed in #1608 also isn't done here, we'd expect that to be a
compound dma::Channel that internally splits a buffer in half and
dispatches callbacks or something like that.
This commit is contained in:
pennae 2023-07-21 23:34:12 +02:00
parent b166ed6b78
commit a6b8f3d994
3 changed files with 165 additions and 7 deletions

View File

@ -1,5 +1,6 @@
use core::future::poll_fn; use core::future::poll_fn;
use core::marker::PhantomData; use core::marker::PhantomData;
use core::mem;
use core::sync::atomic::{compiler_fence, Ordering}; use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll; use core::task::Poll;
@ -11,7 +12,7 @@ use crate::gpio::{self, AnyPin, Pull};
use crate::interrupt::typelevel::Binding; use crate::interrupt::typelevel::Binding;
use crate::interrupt::InterruptExt; use crate::interrupt::InterruptExt;
use crate::peripherals::{ADC, ADC_TEMP_SENSOR}; use crate::peripherals::{ADC, ADC_TEMP_SENSOR};
use crate::{interrupt, pac, peripherals, Peripheral, RegExt}; use crate::{dma, interrupt, pac, peripherals, Peripheral, RegExt};
static WAKER: AtomicWaker = AtomicWaker::new(); static WAKER: AtomicWaker = AtomicWaker::new();
@ -48,7 +49,7 @@ impl<'p> Channel<'p> {
Self(Source::Pin(pin.map_into())) Self(Source::Pin(pin.map_into()))
} }
pub fn new_sensor(s: impl Peripheral<P = ADC_TEMP_SENSOR> + 'p) -> Self { pub fn new_temp_sensor(s: impl Peripheral<P = ADC_TEMP_SENSOR> + 'p) -> Self {
let r = pac::ADC; let r = pac::ADC;
r.cs().write_set(|w| w.set_ts_en(true)); r.cs().write_set(|w| w.set_ts_en(true));
Self(Source::TempSensor(s.into_ref())) Self(Source::TempSensor(s.into_ref()))
@ -82,6 +83,21 @@ impl<'p> Drop for Source<'p> {
} }
} }
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Default)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[repr(transparent)]
pub struct Sample(u16);
impl Sample {
pub fn good(&self) -> bool {
self.0 < 0x8000
}
pub fn value(&self) -> u16 {
self.0 & !0x8000
}
}
#[derive(Debug, Eq, PartialEq, Copy, Clone)] #[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))] #[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error { pub enum Error {
@ -191,6 +207,91 @@ impl<'d> Adc<'d, Async> {
false => Ok(r.result().read().result().into()), false => Ok(r.result().read().result().into()),
} }
} }
async fn read_many_inner<W: dma::Word>(
&mut self,
ch: &mut Channel<'_>,
buf: &mut [W],
fcs_err: bool,
dma: impl Peripheral<P = impl dma::Channel>,
) -> Result<(), Error> {
let r = Self::regs();
// clear previous errors and set channel
r.cs().modify(|w| {
w.set_ainsel(ch.channel());
w.set_err_sticky(true); // clear previous errors
w.set_start_many(false);
});
// wait for previous conversions and drain fifo. an earlier batch read may have
// been cancelled, leaving the adc running.
while !r.cs().read().ready() {}
while !r.fcs().read().empty() {
r.fifo().read();
}
// set up fifo for dma
r.fcs().write(|w| {
w.set_thresh(1);
w.set_dreq_en(true);
w.set_shift(mem::size_of::<W>() == 1);
w.set_en(true);
w.set_err(fcs_err);
});
// reset dma config on drop, regardless of whether it was a future being cancelled
// or the method returning normally.
struct ResetDmaConfig;
impl Drop for ResetDmaConfig {
fn drop(&mut self) {
pac::ADC.cs().write_clear(|w| w.set_start_many(true));
while !pac::ADC.cs().read().ready() {}
pac::ADC.fcs().write_clear(|w| {
w.set_dreq_en(true);
w.set_shift(true);
w.set_en(true);
});
}
}
let auto_reset = ResetDmaConfig;
let dma = unsafe { dma::read(dma, r.fifo().as_ptr() as *const W, buf as *mut [W], 36) };
// start conversions and wait for dma to finish. we can't report errors early
// because there's no interrupt to signal them, and inspecting every element
// of the fifo is too costly to do here.
r.cs().write_set(|w| w.set_start_many(true));
dma.await;
mem::drop(auto_reset);
// we can't report errors before the conversions have ended since no interrupt
// exists to report them early, and since they're exceedingly rare we probably don't
// want to anyway.
match r.cs().read().err_sticky() {
false => Ok(()),
true => Err(Error::ConversionFailed),
}
}
#[inline]
pub async fn read_many<S: AdcSample>(
&mut self,
ch: &mut Channel<'_>,
buf: &mut [S],
dma: impl Peripheral<P = impl dma::Channel>,
) -> Result<(), Error> {
self.read_many_inner(ch, buf, false, dma).await
}
#[inline]
pub async fn read_many_raw(
&mut self,
ch: &mut Channel<'_>,
buf: &mut [Sample],
dma: impl Peripheral<P = impl dma::Channel>,
) {
// errors are reported in individual samples
let _ = self
.read_many_inner(ch, unsafe { mem::transmute::<_, &mut [u16]>(buf) }, true, dma)
.await;
}
} }
impl<'d> Adc<'d, Blocking> { impl<'d> Adc<'d, Blocking> {
@ -214,9 +315,19 @@ impl interrupt::typelevel::Handler<interrupt::typelevel::ADC_IRQ_FIFO> for Inter
} }
mod sealed { mod sealed {
pub trait AdcSample: crate::dma::Word {}
pub trait AdcChannel {} pub trait AdcChannel {}
} }
pub trait AdcSample: sealed::AdcSample {}
impl sealed::AdcSample for u16 {}
impl AdcSample for u16 {}
impl sealed::AdcSample for u8 {}
impl AdcSample for u8 {}
pub trait AdcChannel: sealed::AdcChannel {} pub trait AdcChannel: sealed::AdcChannel {}
pub trait AdcPin: AdcChannel + gpio::Pin {} pub trait AdcPin: AdcChannel + gpio::Pin {}

View File

@ -25,7 +25,7 @@ async fn main(_spawner: Spawner) {
let mut p26 = Channel::new_pin(p.PIN_26, Pull::None); let mut p26 = Channel::new_pin(p.PIN_26, Pull::None);
let mut p27 = Channel::new_pin(p.PIN_27, Pull::None); let mut p27 = Channel::new_pin(p.PIN_27, Pull::None);
let mut p28 = Channel::new_pin(p.PIN_28, Pull::None); let mut p28 = Channel::new_pin(p.PIN_28, Pull::None);
let mut ts = Channel::new_sensor(p.ADC_TEMP_SENSOR); let mut ts = Channel::new_temp_sensor(p.ADC_TEMP_SENSOR);
loop { loop {
let level = adc.read(&mut p26).await.unwrap(); let level = adc.read(&mut p26).await.unwrap();

View File

@ -6,7 +6,7 @@ mod common;
use defmt::*; use defmt::*;
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_rp::adc::{Adc, Channel, Config, InterruptHandler}; use embassy_rp::adc::{Adc, Channel, Config, InterruptHandler, Sample};
use embassy_rp::bind_interrupts; use embassy_rp::bind_interrupts;
use embassy_rp::gpio::Pull; use embassy_rp::gpio::Pull;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
@ -71,10 +71,57 @@ async fn main(_spawner: Spawner) {
defmt::assert!(low < none); defmt::assert!(low < none);
defmt::assert!(none < up); defmt::assert!(none < up);
} }
{
let temp = convert_to_celsius(
adc.read(&mut Channel::new_temp_sensor(&mut p.ADC_TEMP_SENSOR))
.await
.unwrap(),
);
defmt::assert!(temp > 0.0);
defmt::assert!(temp < 60.0);
}
let temp = convert_to_celsius(adc.read(&mut Channel::new_sensor(p.ADC_TEMP_SENSOR)).await.unwrap()); // run a bunch of conversions. we'll only check gp29 and the temp
defmt::assert!(temp > 0.0); // sensor here for brevity, if those two work the rest will too.
defmt::assert!(temp < 60.0); {
// gp29 is connected to vsys through a 200k/100k divider,
// adding pulls should change the value
let mut low = [0u16; 16];
let mut none = [0u8; 16];
let mut up = [Sample::default(); 16];
adc.read_many(
&mut Channel::new_pin(&mut p.PIN_29, Pull::Down),
&mut low,
&mut p.DMA_CH0,
)
.await
.unwrap();
adc.read_many(
&mut Channel::new_pin(&mut p.PIN_29, Pull::None),
&mut none,
&mut p.DMA_CH0,
)
.await
.unwrap();
adc.read_many_raw(&mut Channel::new_pin(&mut p.PIN_29, Pull::Up), &mut up, &mut p.DMA_CH0)
.await;
defmt::assert!(low.iter().zip(none.iter()).all(|(l, n)| *l >> 4 < *n as u16));
defmt::assert!(up.iter().all(|s| s.good()));
defmt::assert!(none.iter().zip(up.iter()).all(|(n, u)| (*n as u16) < u.value()));
}
{
let mut temp = [0u16; 16];
adc.read_many(
&mut Channel::new_temp_sensor(&mut p.ADC_TEMP_SENSOR),
&mut temp,
&mut p.DMA_CH0,
)
.await
.unwrap();
let temp = temp.map(convert_to_celsius);
defmt::assert!(temp.iter().all(|t| *t > 0.0));
defmt::assert!(temp.iter().all(|t| *t < 60.0));
}
info!("Test OK"); info!("Test OK");
cortex_m::asm::bkpt(); cortex_m::asm::bkpt();