Merge pull request #2652 from timokroeger/stm32-ucpd

STM32 USB Type-C/USB Power Delivery Interface (UCPD)
This commit is contained in:
Dario Nieuwenhuis 2024-03-14 21:21:33 +00:00 committed by GitHub
commit 963fda2404
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 702 additions and 40 deletions

View File

@ -764,6 +764,8 @@ fn main() {
#[rustfmt::skip] #[rustfmt::skip]
let signals: HashMap<_, _> = [ let signals: HashMap<_, _> = [
// (kind, signal) => trait // (kind, signal) => trait
(("ucpd", "CC1"), quote!(crate::ucpd::Cc1Pin)),
(("ucpd", "CC2"), quote!(crate::ucpd::Cc2Pin)),
(("usart", "TX"), quote!(crate::usart::TxPin)), (("usart", "TX"), quote!(crate::usart::TxPin)),
(("usart", "RX"), quote!(crate::usart::RxPin)), (("usart", "RX"), quote!(crate::usart::RxPin)),
(("usart", "CTS"), quote!(crate::usart::CtsPin)), (("usart", "CTS"), quote!(crate::usart::CtsPin)),
@ -1102,6 +1104,8 @@ fn main() {
let signals: HashMap<_, _> = [ let signals: HashMap<_, _> = [
// (kind, signal) => trait // (kind, signal) => trait
(("ucpd", "RX"), quote!(crate::ucpd::RxDma)),
(("ucpd", "TX"), quote!(crate::ucpd::TxDma)),
(("usart", "RX"), quote!(crate::usart::RxDma)), (("usart", "RX"), quote!(crate::usart::RxDma)),
(("usart", "TX"), quote!(crate::usart::TxDma)), (("usart", "TX"), quote!(crate::usart::TxDma)),
(("lpuart", "RX"), quote!(crate::usart::RxDma)), (("lpuart", "RX"), quote!(crate::usart::RxDma)),

View File

@ -73,6 +73,8 @@ pub mod sai;
pub mod sdmmc; pub mod sdmmc;
#[cfg(spi)] #[cfg(spi)]
pub mod spi; pub mod spi;
#[cfg(ucpd)]
pub mod ucpd;
#[cfg(uid)] #[cfg(uid)]
pub mod uid; pub mod uid;
#[cfg(usart)] #[cfg(usart)]
@ -281,9 +283,8 @@ pub fn init(config: Config) -> Peripherals {
} }
unsafe { unsafe {
// TODO: refactor into mod ucpd
#[cfg(ucpd)] #[cfg(ucpd)]
ucpd_init( ucpd::init(
cs, cs,
#[cfg(peri_ucpd1)] #[cfg(peri_ucpd1)]
config.enable_ucpd1_dead_battery, config.enable_ucpd1_dead_battery,
@ -332,41 +333,3 @@ pub fn init(config: Config) -> Peripherals {
p p
}) })
} }
#[cfg(ucpd)]
/// Safety: must only be called when all UCPDs are disabled (e.g. at startup)
unsafe fn ucpd_init(
_cs: critical_section::CriticalSection,
#[cfg(peri_ucpd1)] ucpd1_db_enable: bool,
#[cfg(peri_ucpd2)] ucpd2_db_enable: bool,
) {
#[cfg(stm32g0x1)]
{
// according to RM0444 (STM32G0x1) section 8.1.1:
// when UCPD is disabled setting the strobe will disable dead battery
// (which is enabled after reset) but if UCPD is enabled, setting the
// strobe will apply the CC pin configuration from the control register
// (which is why we need to be careful about when we call this)
crate::pac::SYSCFG.cfgr1().modify(|w| {
w.set_ucpd1_strobe(ucpd1_db_enable);
w.set_ucpd2_strobe(ucpd2_db_enable);
});
}
#[cfg(any(stm32g4, stm32l5))]
{
crate::pac::PWR.cr3().modify(|w| {
#[cfg(stm32g4)]
w.set_ucpd1_dbdis(!ucpd1_db_enable);
#[cfg(stm32l5)]
w.set_ucpd_dbdis(!ucpd1_db_enable);
})
}
#[cfg(any(stm32h5, stm32u5))]
{
crate::pac::PWR.ucpdr().modify(|w| {
w.set_ucpd_dbdis(!ucpd1_db_enable);
})
}
}

609
embassy-stm32/src/ucpd.rs Normal file
View File

@ -0,0 +1,609 @@
//! USB Type-C/USB Power Delivery Interface (UCPD)
// Implementation Notes
//
// As of Feb. 2024 the UCPD peripheral is availalbe on: G0, G4, H5, L5, U5
//
// Cube HAL LL Driver (g0):
// https://github.com/STMicroelectronics/stm32g0xx_hal_driver/blob/v1.4.6/Inc/stm32g0xx_ll_ucpd.h
// https://github.com/STMicroelectronics/stm32g0xx_hal_driver/blob/v1.4.6/Src/stm32g0xx_ll_ucpd.c
// Except for a the `LL_UCPD_RxAnalogFilterEnable/Disable()` functions the Cube HAL implementation of
// all families is the same.
//
// Dead battery pull-down resistors functionality is enabled by default on startup and must
// be disabled by setting a bit in PWR/SYSCFG registers. The exact name and location for that
// bit is different for each familily.
use core::future::poll_fn;
use core::marker::PhantomData;
use core::sync::atomic::Ordering;
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use crate::dma::{AnyChannel, Request, Transfer, TransferOptions};
use crate::interrupt;
use crate::interrupt::typelevel::Interrupt;
use crate::pac::ucpd::vals::{Anamode, Ccenable, PscUsbpdclk, Txmode};
pub use crate::pac::ucpd::vals::{Phyccsel as CcSel, TypecVstateCc as CcVState};
use crate::rcc::RccPeripheral;
pub(crate) fn init(
_cs: critical_section::CriticalSection,
#[cfg(peri_ucpd1)] ucpd1_db_enable: bool,
#[cfg(peri_ucpd2)] ucpd2_db_enable: bool,
) {
#[cfg(stm32g0x1)]
{
// according to RM0444 (STM32G0x1) section 8.1.1:
// when UCPD is disabled setting the strobe will disable dead battery
// (which is enabled after reset) but if UCPD is enabled, setting the
// strobe will apply the CC pin configuration from the control register
// (which is why we need to be careful about when we call this)
crate::pac::SYSCFG.cfgr1().modify(|w| {
w.set_ucpd1_strobe(ucpd1_db_enable);
w.set_ucpd2_strobe(ucpd2_db_enable);
});
}
#[cfg(any(stm32g4, stm32l5))]
{
crate::pac::PWR.cr3().modify(|w| {
#[cfg(stm32g4)]
w.set_ucpd1_dbdis(!ucpd1_db_enable);
#[cfg(stm32l5)]
w.set_ucpd_dbdis(!ucpd1_db_enable);
})
}
#[cfg(any(stm32h5, stm32u5))]
{
crate::pac::PWR.ucpdr().modify(|w| {
w.set_ucpd_dbdis(!ucpd1_db_enable);
})
}
}
/// Pull-up or Pull-down resistor state of both CC lines.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum CcPull {
/// Analog PHY for CC pin disabled.
Disabled,
/// Rd=5.1k pull-down resistor.
Sink,
/// Rp=56k pull-up resistor to indicate default USB power.
SourceDefaultUsb,
/// Rp=22k pull-up resistor to indicate support for up to 1.5A.
Source1_5A,
/// Rp=10k pull-up resistor to indicate support for up to 3.0A.
Source3_0A,
}
/// UCPD driver.
pub struct Ucpd<'d, T: Instance> {
cc_phy: CcPhy<'d, T>,
}
impl<'d, T: Instance> Ucpd<'d, T> {
/// Creates a new UCPD driver instance.
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
cc1: impl Peripheral<P = impl Cc1Pin<T>> + 'd,
cc2: impl Peripheral<P = impl Cc2Pin<T>> + 'd,
) -> Self {
into_ref!(cc1, cc2);
cc1.set_as_analog();
cc2.set_as_analog();
T::enable_and_reset();
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
let r = T::REGS;
r.cfgr1().write(|w| {
// "The receiver is designed to work in the clock frequency range from 6 to 18 MHz.
// However, the optimum performance is ensured in the range from 6 to 12 MHz"
// UCPD is driven by HSI16 (16MHz internal oscillator), which we need to divide by 2.
w.set_psc_usbpdclk(PscUsbpdclk::DIV2);
// Prescaler to produce a target half-bit frequency of 600kHz which is required
// to produce transmit with a nominal nominal bit rate of 300Kbps+-10% using
// biphase mark coding (BMC, aka differential manchester coding).
// A divider of 13 gives the target frequency closest to spec (~615kHz, 1.625us).
w.set_hbitclkdiv(13 - 1);
// Time window for detecting non-idle (12-20us).
// 1.75us * 8 = 14us.
w.set_transwin(8 - 1);
// Time from the end of last bit of a Frame until the start of the first bit of the
// next Preamble (min 25us).
// 1.75us * 17 = ~30us
w.set_ifrgap(17 - 1);
// TODO: Currently only hard reset and SOP messages can be received.
// UNDOCUMENTED: This register can only be written while UCPDEN=0 (found by testing).
w.set_rxordseten(0b1001);
// Enable DMA
w.set_txdmaen(true);
w.set_rxdmaen(true);
w.set_ucpden(true);
});
Self {
cc_phy: CcPhy { _lifetime: PhantomData },
}
}
/// Returns the TypeC CC PHY.
pub fn cc_phy(&mut self) -> &mut CcPhy<'d, T> {
&mut self.cc_phy
}
/// Splits the UCPD driver into a TypeC PHY to control and monitor CC voltage
/// and a Power Delivery (PD) PHY with receiver and transmitter.
pub fn split_pd_phy(
self,
rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd,
tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
cc_sel: CcSel,
) -> (CcPhy<'d, T>, PdPhy<'d, T>) {
let r = T::REGS;
// TODO: Currently only SOP messages are supported.
r.tx_ordsetr().write(|w| w.set_txordset(0b10001_11000_11000_11000));
// Enable the receiver on one of the two CC lines.
r.cr().modify(|w| w.set_phyccsel(cc_sel));
// Enable hard reset receive interrupt.
r.imr().modify(|w| w.set_rxhrstdetie(true));
// Both parts must be dropped before the peripheral can be disabled.
T::state().drop_not_ready.store(true, Ordering::Relaxed);
into_ref!(rx_dma, tx_dma);
let rx_dma_req = rx_dma.request();
let tx_dma_req = tx_dma.request();
(
self.cc_phy,
PdPhy {
_lifetime: PhantomData,
rx_dma_ch: rx_dma.map_into(),
rx_dma_req,
tx_dma_ch: tx_dma.map_into(),
tx_dma_req,
},
)
}
}
/// Control and monitoring of TypeC CC pin functionailty.
pub struct CcPhy<'d, T: Instance> {
_lifetime: PhantomData<&'d mut T>,
}
impl<'d, T: Instance> Drop for CcPhy<'d, T> {
fn drop(&mut self) {
let r = T::REGS;
r.cr().modify(|w| {
w.set_cc1tcdis(true);
w.set_cc2tcdis(true);
w.set_ccenable(Ccenable::DISABLED);
});
// Check if the PdPhy part was dropped already.
let drop_not_ready = &T::state().drop_not_ready;
if drop_not_ready.load(Ordering::Relaxed) {
drop_not_ready.store(true, Ordering::Relaxed);
} else {
r.cfgr1().write(|w| w.set_ucpden(false));
T::disable();
T::Interrupt::disable();
}
}
}
impl<'d, T: Instance> CcPhy<'d, T> {
/// Sets the pull-up/pull-down resistor values exposed on the CC pins.
pub fn set_pull(&mut self, cc_pull: CcPull) {
T::REGS.cr().modify(|w| {
w.set_anamode(if cc_pull == CcPull::Sink {
Anamode::SINK
} else {
Anamode::SOURCE
});
w.set_anasubmode(match cc_pull {
CcPull::SourceDefaultUsb => 1,
CcPull::Source1_5A => 2,
CcPull::Source3_0A => 3,
_ => 0,
});
w.set_ccenable(if cc_pull == CcPull::Disabled {
Ccenable::DISABLED
} else {
Ccenable::BOTH
});
});
// Disable dead-battery pull-down resistors which are enabled by default on boot.
critical_section::with(|cs| {
init(
cs,
false,
#[cfg(peri_ucpd2)]
false,
);
});
}
/// Returns the current voltage level of CC1 and CC2 pin as tuple.
///
/// Interpretation of the voltage levels depends on the configured CC line
/// pull-up/pull-down resistance.
pub fn vstate(&self) -> (CcVState, CcVState) {
let sr = T::REGS.sr().read();
(sr.typec_vstate_cc1(), sr.typec_vstate_cc2())
}
/// Waits for a change in voltage state on either CC line.
pub async fn wait_for_vstate_change(&self) -> (CcVState, CcVState) {
let _on_drop = OnDrop::new(|| self.enable_cc_interrupts(false));
let prev_vstate = self.vstate();
poll_fn(|cx| {
let vstate = self.vstate();
if vstate != prev_vstate {
Poll::Ready(vstate)
} else {
T::state().waker.register(cx.waker());
self.enable_cc_interrupts(true);
Poll::Pending
}
})
.await
}
fn enable_cc_interrupts(&self, enable: bool) {
T::REGS.imr().modify(|w| {
w.set_typecevt1ie(enable);
w.set_typecevt2ie(enable);
});
}
}
/// Receive Error.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RxError {
/// Incorrect CRC or truncated message (a line becoming static before EOP is met).
Crc,
/// Provided buffer was too small for the received message.
Overrun,
/// Hard Reset received before or during reception.
HardReset,
}
/// Transmit Error.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TxError {
/// Concurrent receive in progress or excessive noise on the line.
Discarded,
/// Hard Reset received before or during transmission.
HardReset,
}
/// Power Delivery (PD) PHY.
pub struct PdPhy<'d, T: Instance> {
_lifetime: PhantomData<&'d mut T>,
rx_dma_ch: PeripheralRef<'d, AnyChannel>,
rx_dma_req: Request,
tx_dma_ch: PeripheralRef<'d, AnyChannel>,
tx_dma_req: Request,
}
impl<'d, T: Instance> Drop for PdPhy<'d, T> {
fn drop(&mut self) {
// Check if the Type-C part was dropped already.
let drop_not_ready = &T::state().drop_not_ready;
if drop_not_ready.load(Ordering::Relaxed) {
drop_not_ready.store(true, Ordering::Relaxed);
} else {
T::REGS.cfgr1().write(|w| w.set_ucpden(false));
T::disable();
T::Interrupt::disable();
}
}
}
impl<'d, T: Instance> PdPhy<'d, T> {
/// Receives a PD message into the provided buffer.
///
/// Returns the number of received bytes or an error.
pub async fn receive(&mut self, buf: &mut [u8]) -> Result<usize, RxError> {
let r = T::REGS;
let dma = unsafe {
Transfer::new_read(
&self.rx_dma_ch,
self.rx_dma_req,
r.rxdr().as_ptr() as *mut u8,
buf,
TransferOptions::default(),
)
};
// Clear interrupt flags (possibly set from last receive).
r.icr().write(|w| {
w.set_rxorddetcf(true);
w.set_rxovrcf(true);
w.set_rxmsgendcf(true);
});
r.cr().modify(|w| w.set_phyrxen(true));
let _on_drop = OnDrop::new(|| {
r.cr().modify(|w| w.set_phyrxen(false));
self.enable_rx_interrupt(false);
});
poll_fn(|cx| {
let sr = r.sr().read();
if sr.rxhrstdet() {
// Clean and re-enable hard reset receive interrupt.
r.icr().write(|w| w.set_rxhrstdetcf(true));
r.imr().modify(|w| w.set_rxhrstdetie(true));
Poll::Ready(Err(RxError::HardReset))
} else if sr.rxmsgend() {
let ret = if sr.rxovr() {
Err(RxError::Overrun)
} else if sr.rxerr() {
Err(RxError::Crc)
} else {
Ok(())
};
Poll::Ready(ret)
} else {
T::state().waker.register(cx.waker());
self.enable_rx_interrupt(true);
Poll::Pending
}
})
.await?;
// Make sure that the last byte was fetched by DMA.
while r.sr().read().rxne() {
if dma.get_remaining_transfers() == 0 {
return Err(RxError::Overrun);
}
}
Ok(r.rx_payszr().read().rxpaysz().into())
}
fn enable_rx_interrupt(&self, enable: bool) {
T::REGS.imr().modify(|w| w.set_rxmsgendie(enable));
}
/// Transmits a PD message.
pub async fn transmit(&mut self, buf: &[u8]) -> Result<(), TxError> {
let r = T::REGS;
// When a previous transmission was dropped before it had finished it
// might still be running because there is no way to abort an ongoing
// message transmission. Wait for it to finish but ignore errors.
if r.cr().read().txsend() {
if let Err(TxError::HardReset) = self.wait_tx_done().await {
return Err(TxError::HardReset);
}
}
// Clear the TX interrupt flags.
T::REGS.icr().write(|w| {
w.set_txmsgdisccf(true);
w.set_txmsgsentcf(true);
});
// Start the DMA and let it do its thing in the background.
let _dma = unsafe {
Transfer::new_write(
&self.tx_dma_ch,
self.tx_dma_req,
buf,
r.txdr().as_ptr() as *mut u8,
TransferOptions::default(),
)
};
// Configure and start the transmission.
r.tx_payszr().write(|w| w.set_txpaysz(buf.len() as _));
r.cr().modify(|w| {
w.set_txmode(Txmode::PACKET);
w.set_txsend(true);
});
self.wait_tx_done().await
}
async fn wait_tx_done(&self) -> Result<(), TxError> {
let _on_drop = OnDrop::new(|| self.enable_tx_interrupts(false));
poll_fn(|cx| {
let r = T::REGS;
let sr = r.sr().read();
if sr.rxhrstdet() {
// Clean and re-enable hard reset receive interrupt.
r.icr().write(|w| w.set_rxhrstdetcf(true));
r.imr().modify(|w| w.set_rxhrstdetie(true));
Poll::Ready(Err(TxError::HardReset))
} else if sr.txmsgdisc() {
Poll::Ready(Err(TxError::Discarded))
} else if sr.txmsgsent() {
Poll::Ready(Ok(()))
} else {
T::state().waker.register(cx.waker());
self.enable_tx_interrupts(true);
Poll::Pending
}
})
.await
}
fn enable_tx_interrupts(&self, enable: bool) {
T::REGS.imr().modify(|w| {
w.set_txmsgdiscie(enable);
w.set_txmsgsentie(enable);
});
}
/// Transmit a hard reset.
pub async fn transmit_hardreset(&mut self) -> Result<(), TxError> {
let r = T::REGS;
// Clear the hardreset interrupt flags.
T::REGS.icr().write(|w| {
w.set_hrstdisccf(true);
w.set_hrstsentcf(true);
});
// Trigger hard reset transmission.
r.cr().modify(|w| {
w.set_txhrst(true);
});
let _on_drop = OnDrop::new(|| self.enable_hardreset_interrupts(false));
poll_fn(|cx| {
let r = T::REGS;
let sr = r.sr().read();
if sr.rxhrstdet() {
// Clean and re-enable hard reset receive interrupt.
r.icr().write(|w| w.set_rxhrstdetcf(true));
r.imr().modify(|w| w.set_rxhrstdetie(true));
Poll::Ready(Err(TxError::HardReset))
} else if sr.hrstdisc() {
Poll::Ready(Err(TxError::Discarded))
} else if sr.hrstsent() {
Poll::Ready(Ok(()))
} else {
T::state().waker.register(cx.waker());
self.enable_hardreset_interrupts(true);
Poll::Pending
}
})
.await
}
fn enable_hardreset_interrupts(&self, enable: bool) {
T::REGS.imr().modify(|w| {
w.set_hrstdiscie(enable);
w.set_hrstsentie(enable);
});
}
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::REGS;
let sr = r.sr().read();
if sr.typecevt1() || sr.typecevt2() {
r.icr().write(|w| {
w.set_typecevt1cf(true);
w.set_typecevt2cf(true);
});
}
if sr.rxhrstdet() {
r.imr().modify(|w| w.set_rxhrstdetie(false));
}
if sr.rxmsgend() {
r.imr().modify(|w| w.set_rxmsgendie(false));
}
if sr.txmsgdisc() || sr.txmsgsent() {
r.imr().modify(|w| {
w.set_txmsgdiscie(false);
w.set_txmsgsentie(false);
});
}
if sr.hrstdisc() || sr.hrstsent() {
r.imr().modify(|w| {
w.set_hrstdiscie(false);
w.set_hrstsentie(false);
});
}
// Wake the task to clear and re-enabled interrupts.
T::state().waker.wake();
}
}
/// UCPD instance trait.
pub trait Instance: sealed::Instance + RccPeripheral {}
mod sealed {
use core::sync::atomic::AtomicBool;
use embassy_sync::waitqueue::AtomicWaker;
pub struct State {
pub waker: AtomicWaker,
// Inverted logic for a default state of 0 so that the data goes into the .bss section.
pub drop_not_ready: AtomicBool,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
drop_not_ready: AtomicBool::new(false),
}
}
}
pub trait Instance {
type Interrupt: crate::interrupt::typelevel::Interrupt;
const REGS: crate::pac::ucpd::Ucpd;
fn state() -> &'static crate::ucpd::sealed::State;
}
}
foreach_interrupt!(
($inst:ident, ucpd, UCPD, GLOBAL, $irq:ident) => {
impl sealed::Instance for crate::peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
const REGS: crate::pac::ucpd::Ucpd = crate::pac::$inst;
fn state() -> &'static crate::ucpd::sealed::State {
static STATE: crate::ucpd::sealed::State = crate::ucpd::sealed::State::new();
&STATE
}
}
impl Instance for crate::peripherals::$inst {}
};
);
pin_trait!(Cc1Pin, Instance);
pin_trait!(Cc2Pin, Instance);
dma_trait!(TxDma, Instance);
dma_trait!(RxDma, Instance);

View File

@ -0,0 +1,86 @@
#![no_std]
#![no_main]
use defmt::{error, info, Format};
use embassy_executor::Spawner;
use embassy_stm32::ucpd::{self, CcPhy, CcPull, CcSel, CcVState, Ucpd};
use embassy_stm32::{bind_interrupts, peripherals, Config};
use embassy_time::{with_timeout, Duration};
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
UCPD1 => ucpd::InterruptHandler<peripherals::UCPD1>;
});
#[derive(Debug, Format)]
enum CableOrientation {
Normal,
Flipped,
DebugAccessoryMode,
}
// Returns true when the cable
async fn wait_attached<T: ucpd::Instance>(cc_phy: &mut CcPhy<'_, T>) -> CableOrientation {
loop {
let (cc1, cc2) = cc_phy.vstate();
if cc1 == CcVState::LOWEST && cc2 == CcVState::LOWEST {
// Detached, wait until attached by monitoring the CC lines.
cc_phy.wait_for_vstate_change().await;
continue;
}
// Attached, wait for CC lines to be stable for tCCDebounce (100..200ms).
if with_timeout(Duration::from_millis(100), cc_phy.wait_for_vstate_change())
.await
.is_ok()
{
// State has changed, restart detection procedure.
continue;
};
// State was stable for the complete debounce period, check orientation.
return match (cc1, cc2) {
(_, CcVState::LOWEST) => CableOrientation::Normal, // CC1 connected
(CcVState::LOWEST, _) => CableOrientation::Flipped, // CC2 connected
_ => CableOrientation::DebugAccessoryMode, // Both connected (special cable)
};
}
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config = Config::default();
config.enable_ucpd1_dead_battery = true;
let p = embassy_stm32::init(config);
info!("Hello World!");
let mut ucpd = Ucpd::new(p.UCPD1, Irqs {}, p.PB6, p.PB4);
ucpd.cc_phy().set_pull(CcPull::Sink);
info!("Waiting for USB connection...");
let cable_orientation = wait_attached(ucpd.cc_phy()).await;
info!("USB cable connected, orientation: {}", cable_orientation);
let cc_sel = match cable_orientation {
CableOrientation::Normal => {
info!("Starting PD communication on CC1 pin");
CcSel::CC1
}
CableOrientation::Flipped => {
info!("Starting PD communication on CC2 pin");
CcSel::CC2
}
CableOrientation::DebugAccessoryMode => panic!("No PD communication in DAM"),
};
let (_cc_phy, mut pd_phy) = ucpd.split_pd_phy(p.DMA1_CH1, p.DMA1_CH2, cc_sel);
loop {
// Enough space for the longest non-extended data message.
let mut buf = [0_u8; 30];
match pd_phy.receive(buf.as_mut()).await {
Ok(n) => info!("USB PD RX: {=[u8]:?}", &buf[..n]),
Err(e) => error!("USB PD RX: {}", e),
}
}
}