Merge pull request #3128 from andresv/stm32-adc-dma-v3

STM32 ADC v3 and V4 DMA support
This commit is contained in:
Ulf Lilleengen 2024-07-03 08:13:26 +00:00 committed by GitHub
commit 914d7c7919
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 430 additions and 31 deletions

View File

@ -1182,6 +1182,7 @@ fn main() {
(("adc", "ADC1"), quote!(crate::adc::RxDma)),
(("adc", "ADC2"), quote!(crate::adc::RxDma)),
(("adc", "ADC3"), quote!(crate::adc::RxDma)),
(("adc", "ADC4"), quote!(crate::adc::RxDma)),
(("ucpd", "RX"), quote!(crate::ucpd::RxDma)),
(("ucpd", "TX"), quote!(crate::ucpd::TxDma)),
(("usart", "RX"), quote!(crate::usart::RxDma)),

View File

@ -1,9 +1,12 @@
use cfg_if::cfg_if;
use embassy_hal_internal::into_ref;
use pac::adc::vals::Dmacfg;
use super::blocking_delay_us;
use crate::adc::{Adc, AdcChannel, Instance, Resolution, SampleTime};
use crate::{rcc, Peripheral};
use super::{
blocking_delay_us, Adc, AdcChannel, AnyAdcChannel, Instance, Resolution, RxDma, SampleTime, SealedAdcChannel,
};
use crate::dma::Transfer;
use crate::{pac, rcc, Peripheral};
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
@ -12,7 +15,7 @@ pub const VREF_CALIB_MV: u32 = 3000;
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
impl<T: Instance> SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
@ -31,7 +34,7 @@ impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
impl<T: Instance> SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
@ -50,7 +53,7 @@ impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> super::SealedAdcChannel<T> for Vbat {
impl<T: Instance> SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
cfg_if! {
if #[cfg(adc_g0)] {
@ -101,6 +104,7 @@ impl<'d, T: Instance> Adc<'d, T> {
reg.set_advregen(true);
});
// If this is false then each ADC_CHSELR bit enables an input channel.
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_chselrmod(false);
@ -124,6 +128,28 @@ impl<'d, T: Instance> Adc<'d, T> {
}
}
// Enable ADC only when it is not already running.
fn enable(&mut self) {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
}
if !T::regs().cr().read().aden() {
// Enable ADC
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
});
while !T::regs().isr().read().adrdy() {
// spin
}
}
}
pub fn enable_vrefint(&self) -> VrefInt {
#[cfg(not(any(adc_g0, adc_u0)))]
T::common_regs().ccr().modify(|reg| {
@ -181,10 +207,17 @@ impl<'d, T: Instance> Adc<'d, T> {
Vbat {}
}
/// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
/// Get the ADC sample time.
pub fn sample_time(&self) -> SampleTime {
self.sample_time
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
@ -220,24 +253,140 @@ impl<'d, T: Instance> Adc<'d, T> {
T::regs().dr().read().0 as u16
}
/// Read an ADC channel.
pub fn read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
self.read_channel(channel)
}
// Enable ADC
/// Asynchronously read from sequence of ADC channels.
pub async fn read_async(
&mut self,
rx_dma: &mut impl RxDma<T>,
sequence: impl ExactSizeIterator<Item = (&mut AnyAdcChannel<T>, SampleTime)>,
readings: &mut [u16],
) {
assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
assert!(
sequence.len() == readings.len(),
"Sequence length must be equal to readings length"
);
assert!(
sequence.len() <= 16,
"Asynchronous read sequence cannot be more than 16 in length"
);
// Ensure no conversions are ongoing and ADC is enabled.
Self::cancel_conversions();
self.enable();
// Set sequence length
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().sqr1().modify(|w| {
w.set_l(sequence.len() as u8 - 1);
});
#[cfg(any(adc_g0, adc_u0))]
let mut channel_mask = 0;
// Configure channels and ranks
for (_i, (channel, sample_time)) in sequence.enumerate() {
Self::configure_channel(channel, sample_time);
// Each channel is sampled according to sequence
#[cfg(not(any(adc_g0, adc_u0)))]
match _i {
0..=3 => {
T::regs().sqr1().modify(|w| {
w.set_sq(_i, channel.channel());
});
}
4..=8 => {
T::regs().sqr2().modify(|w| {
w.set_sq(_i - 4, channel.channel());
});
}
9..=13 => {
T::regs().sqr3().modify(|w| {
w.set_sq(_i - 9, channel.channel());
});
}
14..=15 => {
T::regs().sqr4().modify(|w| {
w.set_sq(_i - 14, channel.channel());
});
}
_ => unreachable!(),
}
#[cfg(any(adc_g0, adc_u0))]
{
channel_mask |= 1 << channel.channel();
}
}
// On G0 and U0 enabled channels are sampled from 0 to last channel.
// It is possible to add up to 8 sequences if CHSELRMOD = 1.
// However for supporting more than 8 channels alternative CHSELRMOD = 0 approach is used.
#[cfg(any(adc_g0, adc_u0))]
T::regs().chselr().modify(|reg| {
reg.set_chsel(channel_mask);
});
// Set continuous mode with oneshot dma.
// Clear overrun flag before starting transfer.
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
reg.set_ovr(true);
});
while !T::regs().isr().read().adrdy() {
// spin
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| {
reg.set_discen(false);
reg.set_cont(true);
reg.set_dmacfg(Dmacfg::ONESHOT);
reg.set_dmaen(true);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_discen(false);
reg.set_cont(true);
reg.set_dmacfg(Dmacfg::ONESHOT);
reg.set_dmaen(true);
});
let request = rx_dma.request();
let transfer = unsafe {
Transfer::new_read(
rx_dma,
request,
T::regs().dr().as_ptr() as *mut u16,
readings,
Default::default(),
)
};
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
// Wait for conversion sequence to finish.
transfer.await;
// Ensure conversions are finished.
Self::cancel_conversions();
// Reset configuration.
#[cfg(not(any(adc_g0, adc_u0)))]
T::regs().cfgr().modify(|reg| {
reg.set_cont(false);
});
#[cfg(any(adc_g0, adc_u0))]
T::regs().cfgr1().modify(|reg| {
reg.set_cont(false);
});
}
fn configure_channel(channel: &mut impl AdcChannel<T>, sample_time: SampleTime) {
// RM0492, RM0481, etc.
// "This option bit must be set to 1 when ADCx_INP0 or ADCx_INN1 channel is selected."
#[cfg(adc_h5)]
@ -246,7 +395,12 @@ impl<'d, T: Instance> Adc<'d, T> {
}
// Configure channel
Self::set_channel_sample_time(channel.channel(), self.sample_time);
Self::set_channel_sample_time(channel.channel(), sample_time);
}
fn read_channel(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
self.enable();
Self::configure_channel(channel, self.sample_time);
// Select channel
#[cfg(not(any(adc_g0, adc_u0)))]
@ -262,7 +416,6 @@ impl<'d, T: Instance> Adc<'d, T> {
// STM32G4: Section 2.7.3
#[cfg(any(rcc_l4, rcc_g4))]
let _ = self.convert();
let val = self.convert();
T::regs().cr().modify(|reg| reg.set_addis(true));
@ -295,6 +448,7 @@ impl<'d, T: Instance> Adc<'d, T> {
fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) {
cfg_if! {
if #[cfg(any(adc_g0, adc_u0))] {
// On G0 and U6 all channels use the same sampling time.
T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.into()));
} else if #[cfg(adc_h5)] {
match _ch {
@ -309,4 +463,13 @@ impl<'d, T: Instance> Adc<'d, T> {
}
}
}
fn cancel_conversions() {
if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
T::regs().cr().modify(|reg| {
reg.set_adstp(true);
});
while T::regs().cr().read().adstart() {}
}
}
}

View File

@ -1,8 +1,11 @@
#[allow(unused)]
use pac::adc::vals::{Adcaldif, Boost, Difsel, Exten, Pcsel};
use pac::adc::vals::{Adcaldif, Adstp, Boost, Difsel, Dmngt, Exten, Pcsel};
use pac::adccommon::vals::Presc;
use super::{blocking_delay_us, Adc, AdcChannel, Instance, Resolution, SampleTime};
use super::{
blocking_delay_us, Adc, AdcChannel, AnyAdcChannel, Instance, Resolution, RxDma, SampleTime, SealedAdcChannel,
};
use crate::dma::Transfer;
use crate::time::Hertz;
use crate::{pac, rcc, Peripheral};
@ -34,7 +37,7 @@ const VBAT_CHANNEL: u8 = 17;
/// Internal voltage reference channel.
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
impl<T: Instance> SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
VREF_CHANNEL
}
@ -43,7 +46,7 @@ impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
/// Internal temperature channel.
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
impl<T: Instance> SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
TEMP_CHANNEL
}
@ -52,7 +55,7 @@ impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
/// Internal battery voltage channel.
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> super::SealedAdcChannel<T> for Vbat {
impl<T: Instance> SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
VBAT_CHANNEL
}
@ -262,6 +265,11 @@ impl<'d, T: Instance> Adc<'d, T> {
self.sample_time = sample_time;
}
/// Get the ADC sample time.
pub fn sample_time(&self) -> SampleTime {
self.sample_time
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
@ -311,25 +319,123 @@ impl<'d, T: Instance> Adc<'d, T> {
/// Read an ADC channel.
pub fn read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
channel.setup();
self.read_channel(channel.channel())
self.read_channel(channel)
}
fn read_channel(&mut self, channel: u8) -> u16 {
// Configure channel
Self::set_channel_sample_time(channel, self.sample_time);
/// Asynchronously read from sequence of ADC channels.
pub async fn read_async(
&mut self,
rx_dma: &mut impl RxDma<T>,
sequence: impl ExactSizeIterator<Item = (&mut AnyAdcChannel<T>, SampleTime)>,
readings: &mut [u16],
) {
assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
assert!(
sequence.len() == readings.len(),
"Sequence length must be equal to readings length"
);
assert!(
sequence.len() <= 16,
"Asynchronous read sequence cannot be more than 16 in length"
);
// Ensure no conversions are ongoing
Self::cancel_conversions();
// Set sequence length
T::regs().sqr1().modify(|w| {
w.set_l(sequence.len() as u8 - 1);
});
// Configure channels and ranks
for (i, (channel, sample_time)) in sequence.enumerate() {
Self::configure_channel(channel, sample_time);
match i {
0..=3 => {
T::regs().sqr1().modify(|w| {
w.set_sq(i, channel.channel());
});
}
4..=8 => {
T::regs().sqr2().modify(|w| {
w.set_sq(i - 4, channel.channel());
});
}
9..=13 => {
T::regs().sqr3().modify(|w| {
w.set_sq(i - 9, channel.channel());
});
}
14..=15 => {
T::regs().sqr4().modify(|w| {
w.set_sq(i - 14, channel.channel());
});
}
_ => unreachable!(),
}
}
// Set continuous mode with oneshot dma.
// Clear overrun flag before starting transfer.
T::regs().isr().modify(|reg| {
reg.set_ovr(true);
});
T::regs().cfgr().modify(|reg| {
reg.set_cont(true);
reg.set_dmngt(Dmngt::DMA_ONESHOT);
});
let request = rx_dma.request();
let transfer = unsafe {
Transfer::new_read(
rx_dma,
request,
T::regs().dr().as_ptr() as *mut u16,
readings,
Default::default(),
)
};
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
// Wait for conversion sequence to finish.
transfer.await;
// Ensure conversions are finished.
Self::cancel_conversions();
// Reset configuration.
T::regs().cfgr().modify(|reg| {
reg.set_cont(false);
reg.set_dmngt(Dmngt::from_bits(0));
});
}
fn configure_channel(channel: &mut impl AdcChannel<T>, sample_time: SampleTime) {
channel.setup();
let channel = channel.channel();
Self::set_channel_sample_time(channel, sample_time);
#[cfg(stm32h7)]
{
T::regs().cfgr2().modify(|w| w.set_lshift(0));
T::regs()
.pcsel()
.write(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED));
.modify(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED));
}
}
T::regs().sqr1().write(|reg| {
reg.set_sq(0, channel);
fn read_channel(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
Self::configure_channel(channel, self.sample_time);
T::regs().sqr1().modify(|reg| {
reg.set_sq(0, channel.channel());
reg.set_l(0);
});
@ -344,4 +450,13 @@ impl<'d, T: Instance> Adc<'d, T> {
T::regs().smpr(1).modify(|reg| reg.set_smp((ch - 10) as _, sample_time));
}
}
fn cancel_conversions() {
if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
T::regs().cr().modify(|reg| {
reg.set_adstp(Adstp::STOP);
});
while T::regs().cr().read().adstart() {}
}
}
}

View File

@ -0,0 +1,44 @@
#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::adc::{Adc, AdcChannel as _, SampleTime};
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
static mut DMA_BUF: [u16; 2] = [0; 2];
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut read_buffer = unsafe { &mut DMA_BUF[..] };
let p = embassy_stm32::init(Default::default());
info!("Hello World!");
let mut adc = Adc::new(p.ADC1);
let mut dma = p.DMA1_CH1;
let mut vrefint_channel = adc.enable_vrefint().degrade_adc();
let mut pa0 = p.PA0.degrade_adc();
loop {
adc.read_async(
&mut dma,
[
(&mut vrefint_channel, SampleTime::CYCLES160_5),
(&mut pa0, SampleTime::CYCLES160_5),
]
.into_iter(),
&mut read_buffer,
)
.await;
let vrefint = read_buffer[0];
let measured = read_buffer[1];
info!("vrefint: {}", vrefint);
info!("measured: {}", measured);
Timer::after_millis(500).await;
}
}

View File

@ -0,0 +1,76 @@
#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::adc::{Adc, AdcChannel as _, SampleTime};
use embassy_stm32::Config;
use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _};
#[link_section = ".ram_d3"]
static mut DMA_BUF: [u16; 2] = [0; 2];
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut read_buffer = unsafe { &mut DMA_BUF[..] };
let mut config = Config::default();
{
use embassy_stm32::rcc::*;
config.rcc.hsi = Some(HSIPrescaler::DIV1);
config.rcc.csi = true;
config.rcc.pll1 = Some(Pll {
source: PllSource::HSI,
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV2),
divq: Some(PllDiv::DIV8), // SPI1 cksel defaults to pll1_q
divr: None,
});
config.rcc.pll2 = Some(Pll {
source: PllSource::HSI,
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL50,
divp: Some(PllDiv::DIV8), // 100mhz
divq: None,
divr: None,
});
config.rcc.sys = Sysclk::PLL1_P; // 400 Mhz
config.rcc.ahb_pre = AHBPrescaler::DIV2; // 200 Mhz
config.rcc.apb1_pre = APBPrescaler::DIV2; // 100 Mhz
config.rcc.apb2_pre = APBPrescaler::DIV2; // 100 Mhz
config.rcc.apb3_pre = APBPrescaler::DIV2; // 100 Mhz
config.rcc.apb4_pre = APBPrescaler::DIV2; // 100 Mhz
config.rcc.voltage_scale = VoltageScale::Scale1;
config.rcc.mux.adcsel = mux::Adcsel::PLL2_P;
}
let p = embassy_stm32::init(config);
info!("Hello World!");
let mut adc = Adc::new(p.ADC3);
let mut dma = p.DMA1_CH1;
let mut vrefint_channel = adc.enable_vrefint().degrade_adc();
let mut pc0 = p.PC0.degrade_adc();
loop {
adc.read_async(
&mut dma,
[
(&mut vrefint_channel, SampleTime::CYCLES387_5),
(&mut pc0, SampleTime::CYCLES810_5),
]
.into_iter(),
&mut read_buffer,
)
.await;
let vrefint = read_buffer[0];
let measured = read_buffer[1];
info!("vrefint: {}", vrefint);
info!("measured: {}", measured);
Timer::after_millis(500).await;
}
}