Move FrameOptions and related function to module itself

This commit is contained in:
Sebastian Goll 2024-03-27 00:33:04 +01:00
parent b299266cd2
commit 7e44db099c
2 changed files with 131 additions and 128 deletions

View File

@ -6,6 +6,7 @@
mod _version;
use core::future::Future;
use core::iter;
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
@ -335,3 +336,132 @@ impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c:
self.transaction(address, operations).await
}
}
/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
/// - `ACK`/`NACK` = last byte in read operation
#[derive(Copy, Clone)]
enum FrameOptions {
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall.
FirstAndLastFrame,
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
/// not the last frame overall.
FirstFrame,
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
/// frame in a read operation.
FirstAndNextFrame,
/// `[ACK]` Middle frame in a read operation (neither first nor last).
NextFrame,
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
LastFrame,
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
LastFrameNoStop,
}
impl FrameOptions {
/// Sends start or repeated start condition before transfer.
fn send_start(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
}
}
/// Sends stop condition after transfer.
fn send_stop(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::LastFrame => true,
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
}
}
/// Sends NACK after last byte received, indicating end of read operation.
fn send_nack(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
Self::FirstAndNextFrame | Self::NextFrame => false,
}
}
}
/// Iterates over operations in transaction.
///
/// Returns necessary frame options for each operation to uphold the [transaction contract] and have
/// the right start/stop/(N)ACK conditions on the wire.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
fn operation_frames<'a, 'b: 'a>(
operations: &'a mut [embedded_hal_1::i2c::Operation<'b>],
) -> Result<impl IntoIterator<Item = (&'a mut embedded_hal_1::i2c::Operation<'b>, FrameOptions)>, Error> {
use embedded_hal_1::i2c::Operation;
// Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
// error in the middle of the transaction.
if operations.iter().any(|op| match op {
Operation::Read(read) => read.is_empty(),
Operation::Write(_) => false,
}) {
return Err(Error::Overrun);
}
let mut operations = operations.iter_mut().peekable();
let mut next_first_frame = true;
Ok(iter::from_fn(move || {
let Some(op) = operations.next() else {
return None;
};
// Is `op` first frame of its type?
let first_frame = next_first_frame;
let next_op = operations.peek();
// Get appropriate frame options as combination of the following properties:
//
// - For each first operation of its type, generate a (repeated) start condition.
// - For the last operation overall in the entire transaction, generate a stop condition.
// - For read operations, check the next operation: if it is also a read operation, we merge
// these and send ACK for all bytes in the current operation; send NACK only for the final
// read operation's last byte (before write or end of entire transaction) to indicate last
// byte read and release the bus for transmission of the bus master's next byte (or stop).
//
// We check the third property unconditionally, i.e. even for write opeartions. This is okay
// because the resulting frame options are identical for write operations.
let frame = match (first_frame, next_op) {
(true, None) => FrameOptions::FirstAndLastFrame,
(true, Some(Operation::Read(_))) => FrameOptions::FirstAndNextFrame,
(true, Some(Operation::Write(_))) => FrameOptions::FirstFrame,
//
(false, None) => FrameOptions::LastFrame,
(false, Some(Operation::Read(_))) => FrameOptions::NextFrame,
(false, Some(Operation::Write(_))) => FrameOptions::LastFrameNoStop,
};
// Pre-calculate if `next_op` is the first operation of its type. We do this here and not at
// the beginning of the loop because we hand out `op` as iterator value and cannot access it
// anymore in the next iteration.
next_first_frame = match (&op, next_op) {
(_, None) => false,
(Operation::Read(_), Some(Operation::Write(_))) | (Operation::Write(_), Some(Operation::Read(_))) => true,
(Operation::Read(_), Some(Operation::Read(_))) | (Operation::Write(_), Some(Operation::Write(_))) => false,
};
Some((op, frame))
}))
}

View File

@ -5,7 +5,7 @@
//! All other devices (as of 2023-12-28) use [`v2`](super::v2) instead.
use core::future::poll_fn;
use core::{iter, task::Poll};
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
@ -41,133 +41,6 @@ pub unsafe fn on_interrupt<T: Instance>() {
});
}
/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
/// - `ACK`/`NACK` = last byte in read operation
#[derive(Copy, Clone)]
enum FrameOptions {
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall.
FirstAndLastFrame,
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
/// not the last frame overall.
FirstFrame,
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
/// frame in a read operation.
FirstAndNextFrame,
/// `[ACK]` Middle frame in a read operation (neither first nor last).
NextFrame,
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
LastFrame,
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
LastFrameNoStop,
}
impl FrameOptions {
/// Sends start or repeated start condition before transfer.
fn send_start(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
}
}
/// Sends stop condition after transfer.
fn send_stop(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::LastFrame => true,
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
}
}
/// Sends NACK after last byte received, indicating end of read operation.
fn send_nack(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
Self::FirstAndNextFrame | Self::NextFrame => false,
}
}
}
/// Iterates over operations in transaction.
///
/// Returns necessary frame options for each operation to uphold the [transaction contract] and have
/// the right start/stop/(N)ACK conditions on the wire.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
fn operation_frames<'a, 'b: 'a>(
operations: &'a mut [Operation<'b>],
) -> Result<impl IntoIterator<Item = (&'a mut Operation<'b>, FrameOptions)>, Error> {
// Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
// error in the middle of the transaction.
if operations.iter().any(|op| match op {
Operation::Read(read) => read.is_empty(),
Operation::Write(_) => false,
}) {
return Err(Error::Overrun);
}
let mut operations = operations.iter_mut().peekable();
let mut next_first_frame = true;
Ok(iter::from_fn(move || {
let Some(op) = operations.next() else {
return None;
};
// Is `op` first frame of its type?
let first_frame = next_first_frame;
let next_op = operations.peek();
// Get appropriate frame options as combination of the following properties:
//
// - For each first operation of its type, generate a (repeated) start condition.
// - For the last operation overall in the entire transaction, generate a stop condition.
// - For read operations, check the next operation: if it is also a read operation, we merge
// these and send ACK for all bytes in the current operation; send NACK only for the final
// read operation's last byte (before write or end of entire transaction) to indicate last
// byte read and release the bus for transmission of the bus master's next byte (or stop).
//
// We check the third property unconditionally, i.e. even for write opeartions. This is okay
// because the resulting frame options are identical for write operations.
let frame = match (first_frame, next_op) {
(true, None) => FrameOptions::FirstAndLastFrame,
(true, Some(Operation::Read(_))) => FrameOptions::FirstAndNextFrame,
(true, Some(Operation::Write(_))) => FrameOptions::FirstFrame,
//
(false, None) => FrameOptions::LastFrame,
(false, Some(Operation::Read(_))) => FrameOptions::NextFrame,
(false, Some(Operation::Write(_))) => FrameOptions::LastFrameNoStop,
};
// Pre-calculate if `next_op` is the first operation of its type. We do this here and not at
// the beginning of the loop because we hand out `op` as iterator value and cannot access it
// anymore in the next iteration.
next_first_frame = match (&op, next_op) {
(_, None) => false,
(Operation::Read(_), Some(Operation::Write(_))) | (Operation::Write(_), Some(Operation::Read(_))) => true,
(Operation::Read(_), Some(Operation::Read(_))) | (Operation::Write(_), Some(Operation::Write(_))) => false,
};
Some((op, frame))
}))
}
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub(crate) fn init(&mut self, freq: Hertz, _config: Config) {
T::regs().cr1().modify(|reg| {