Merge pull request #2697 from eZioPan/stm32-cordic

stm32 CORDIC driver
This commit is contained in:
Dario Nieuwenhuis 2024-04-04 21:32:27 +00:00 committed by GitHub
commit 6c35a1769d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 1247 additions and 7 deletions

View File

@ -484,7 +484,7 @@ fn main() {
let expr = if let Some(mux) = self.chained_muxes.get(&v.name) { let expr = if let Some(mux) = self.chained_muxes.get(&v.name) {
self.gen_mux(mux) self.gen_mux(mux)
} else { } else {
self.gen_clock(&v.name) self.gen_clock(v.name)
}; };
match_arms.extend(quote! { match_arms.extend(quote! {
crate::pac::rcc::vals::#enum_name::#variant_name => #expr, crate::pac::rcc::vals::#enum_name::#variant_name => #expr,
@ -1139,11 +1139,18 @@ fn main() {
(("timer", "CH2"), quote!(crate::timer::Ch2Dma)), (("timer", "CH2"), quote!(crate::timer::Ch2Dma)),
(("timer", "CH3"), quote!(crate::timer::Ch3Dma)), (("timer", "CH3"), quote!(crate::timer::Ch3Dma)),
(("timer", "CH4"), quote!(crate::timer::Ch4Dma)), (("timer", "CH4"), quote!(crate::timer::Ch4Dma)),
(("cordic", "WRITE"), quote!(crate::cordic::WriteDma)), // FIXME: stm32u5a crash on Cordic driver
(("cordic", "READ"), quote!(crate::cordic::ReadDma)), // FIXME: stm32u5a crash on Cordic driver
] ]
.into(); .into();
for p in METADATA.peripherals { for p in METADATA.peripherals {
if let Some(regs) = &p.registers { if let Some(regs) = &p.registers {
// FIXME: stm32u5a crash on Cordic driver
if chip_name.starts_with("stm32u5a") && regs.kind == "cordic" {
continue;
}
let mut dupe = HashSet::new(); let mut dupe = HashSet::new();
for ch in p.dma_channels { for ch in p.dma_channels {
// Some chips have multiple request numbers for the same (peri, signal, channel) combos. // Some chips have multiple request numbers for the same (peri, signal, channel) combos.

View File

@ -0,0 +1,71 @@
/// CORDIC function
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Function {
Cos = 0,
Sin,
Phase,
Modulus,
Arctan,
Cosh,
Sinh,
Arctanh,
Ln,
Sqrt,
}
/// CORDIC precision
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, Default)]
pub enum Precision {
Iters4 = 1,
Iters8,
Iters12,
Iters16,
Iters20,
#[default]
Iters24, // this value is recommended by Reference Manual
Iters28,
Iters32,
Iters36,
Iters40,
Iters44,
Iters48,
Iters52,
Iters56,
Iters60,
}
/// CORDIC scale
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Scale {
#[default]
Arg1Res1 = 0,
Arg1o2Res2,
Arg1o4Res4,
Arg1o8Res8,
Arg1o16Res16,
Arg1o32Res32,
Arg1o64Res64,
Arg1o128Res128,
}
/// CORDIC argument/result register access count
#[allow(missing_docs)]
#[derive(Clone, Copy, Default)]
pub enum AccessCount {
#[default]
One,
Two,
}
/// CORDIC argument/result data width
#[allow(missing_docs)]
#[derive(Clone, Copy)]
pub enum Width {
Bits32,
Bits16,
}

View File

@ -0,0 +1,144 @@
use super::{Function, Scale};
/// Error for [Cordic](super::Cordic)
#[derive(Debug)]
pub enum CordicError {
/// Config error
ConfigError(ConfigError),
/// Argument length is incorrect
ArgumentLengthIncorrect,
/// Result buffer length error
ResultLengthNotEnough,
/// Input value is out of range for Q1.x format
NumberOutOfRange(NumberOutOfRange),
/// Argument error
ArgError(ArgError),
}
impl From<ConfigError> for CordicError {
fn from(value: ConfigError) -> Self {
Self::ConfigError(value)
}
}
impl From<NumberOutOfRange> for CordicError {
fn from(value: NumberOutOfRange) -> Self {
Self::NumberOutOfRange(value)
}
}
impl From<ArgError> for CordicError {
fn from(value: ArgError) -> Self {
Self::ArgError(value)
}
}
#[cfg(feature = "defmt")]
impl defmt::Format for CordicError {
fn format(&self, fmt: defmt::Formatter) {
use CordicError::*;
match self {
ConfigError(e) => defmt::write!(fmt, "{}", e),
ResultLengthNotEnough => defmt::write!(fmt, "Output buffer length is not long enough"),
ArgumentLengthIncorrect => defmt::write!(fmt, "Argument length incorrect"),
NumberOutOfRange(e) => defmt::write!(fmt, "{}", e),
ArgError(e) => defmt::write!(fmt, "{}", e),
}
}
}
/// Error during parsing [Cordic::Config](super::Config)
#[allow(dead_code)]
#[derive(Debug)]
pub struct ConfigError {
pub(super) func: Function,
pub(super) scale_range: [u8; 2],
}
#[cfg(feature = "defmt")]
impl defmt::Format for ConfigError {
fn format(&self, fmt: defmt::Formatter) {
defmt::write!(fmt, "For FUNCTION: {},", self.func);
if self.scale_range[0] == self.scale_range[1] {
defmt::write!(fmt, " SCALE value should be {}", self.scale_range[0])
} else {
defmt::write!(
fmt,
" SCALE value should be {} <= SCALE <= {}",
self.scale_range[0],
self.scale_range[1]
)
}
}
}
/// Input value is out of range for Q1.x format
#[allow(missing_docs)]
#[derive(Debug)]
pub enum NumberOutOfRange {
BelowLowerBound,
AboveUpperBound,
}
#[cfg(feature = "defmt")]
impl defmt::Format for NumberOutOfRange {
fn format(&self, fmt: defmt::Formatter) {
use NumberOutOfRange::*;
match self {
BelowLowerBound => defmt::write!(fmt, "input value should be equal or greater than -1"),
AboveUpperBound => defmt::write!(fmt, "input value should be equal or less than 1"),
}
}
}
/// Error on checking input arguments
#[allow(dead_code)]
#[derive(Debug)]
pub struct ArgError {
pub(super) func: Function,
pub(super) scale: Option<Scale>,
pub(super) arg_range: [f32; 2], // only for debug display, f32 is ok
pub(super) inclusive_upper_bound: bool,
pub(super) arg_type: ArgType,
}
#[cfg(feature = "defmt")]
impl defmt::Format for ArgError {
fn format(&self, fmt: defmt::Formatter) {
defmt::write!(fmt, "For FUNCTION: {},", self.func);
if let Some(scale) = self.scale {
defmt::write!(fmt, " when SCALE is {},", scale);
}
defmt::write!(fmt, " {} should be", self.arg_type);
if self.inclusive_upper_bound {
defmt::write!(
fmt,
" {} <= {} <= {}",
self.arg_range[0],
self.arg_type,
self.arg_range[1]
)
} else {
defmt::write!(
fmt,
" {} <= {} < {}",
self.arg_range[0],
self.arg_type,
self.arg_range[1]
)
};
}
}
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub(super) enum ArgType {
Arg1,
Arg2,
}

View File

@ -0,0 +1,617 @@
//! coordinate rotation digital computer (CORDIC)
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use crate::{dma, peripherals};
mod enums;
pub use enums::*;
mod errors;
pub use errors::*;
mod sealed;
use self::sealed::SealedInstance;
pub mod utils;
/// CORDIC driver
pub struct Cordic<'d, T: Instance> {
peri: PeripheralRef<'d, T>,
config: Config,
}
/// CORDIC instance trait
#[allow(private_bounds)]
pub trait Instance: SealedInstance + Peripheral<P = Self> + crate::rcc::RccPeripheral {}
/// CORDIC configuration
#[derive(Debug)]
pub struct Config {
function: Function,
precision: Precision,
scale: Scale,
}
impl Config {
/// Create a config for Cordic driver
pub fn new(function: Function, precision: Precision, scale: Scale) -> Result<Self, CordicError> {
let config = Self {
function,
precision,
scale,
};
config.check_scale()?;
Ok(config)
}
fn check_scale(&self) -> Result<(), ConfigError> {
use Function::*;
let scale_raw = self.scale as u8;
let err_range = match self.function {
Cos | Sin | Phase | Modulus if !(0..=0).contains(&scale_raw) => Some([0, 0]),
Arctan if !(0..=7).contains(&scale_raw) => Some([0, 7]),
Cosh | Sinh | Arctanh if !(1..=1).contains(&scale_raw) => Some([1, 1]),
Ln if !(1..=4).contains(&scale_raw) => Some([1, 4]),
Sqrt if !(0..=2).contains(&scale_raw) => Some([0, 2]),
Cos | Sin | Phase | Modulus | Arctan | Cosh | Sinh | Arctanh | Ln | Sqrt => None,
};
if let Some(range) = err_range {
Err(ConfigError {
func: self.function,
scale_range: range,
})
} else {
Ok(())
}
}
}
// common method
impl<'d, T: Instance> Cordic<'d, T> {
/// Create a Cordic driver instance
///
/// Note:
/// If you need a peripheral -> CORDIC -> peripheral mode,
/// you may want to set Cordic into [Mode::ZeroOverhead] mode, and add extra arguments with [Self::extra_config]
pub fn new(peri: impl Peripheral<P = T> + 'd, config: Config) -> Self {
T::enable_and_reset();
into_ref!(peri);
let mut instance = Self { peri, config };
instance.reconfigure();
instance
}
/// Set a new config for Cordic driver
pub fn set_config(&mut self, config: Config) {
self.config = config;
self.reconfigure();
}
/// Set extra config for data count and data width.
pub fn extra_config(&mut self, arg_cnt: AccessCount, arg_width: Width, res_width: Width) {
self.peri.set_argument_count(arg_cnt);
self.peri.set_data_width(arg_width, res_width);
}
fn clean_rrdy_flag(&mut self) {
while self.peri.ready_to_read() {
self.peri.read_result();
}
}
/// Disable IRQ and DMA, clean RRDY, and set ARG2 to +1 (0x7FFFFFFF)
pub fn reconfigure(&mut self) {
// reset ARG2 to +1
{
self.peri.disable_irq();
self.peri.disable_read_dma();
self.peri.disable_write_dma();
self.clean_rrdy_flag();
self.peri.set_func(Function::Cos);
self.peri.set_precision(Precision::Iters4);
self.peri.set_scale(Scale::Arg1Res1);
self.peri.set_argument_count(AccessCount::Two);
self.peri.set_data_width(Width::Bits32, Width::Bits32);
self.peri.write_argument(0x0u32);
self.peri.write_argument(0x7FFFFFFFu32);
self.clean_rrdy_flag();
}
self.peri.set_func(self.config.function);
self.peri.set_precision(self.config.precision);
self.peri.set_scale(self.config.scale);
// we don't set NRES in here, but to make sure NRES is set each time user call "calc"-ish functions,
// since each "calc"-ish functions can have different ARGSIZE and RESSIZE, thus NRES should be change accordingly.
}
}
impl<'d, T: Instance> Drop for Cordic<'d, T> {
fn drop(&mut self) {
T::disable();
}
}
// q1.31 related
impl<'d, T: Instance> Cordic<'d, T> {
/// Run a blocking CORDIC calculation in q1.31 format
///
/// Notice:
/// If you set `arg1_only` to `true`, please be sure ARG2 value has been set to desired value before.
/// This function won't set ARG2 to +1 before or after each round of calculation.
/// If you want to make sure ARG2 is set to +1, consider run [.reconfigure()](Self::reconfigure).
pub fn blocking_calc_32bit(
&mut self,
arg: &[u32],
res: &mut [u32],
arg1_only: bool,
res1_only: bool,
) -> Result<usize, CordicError> {
if arg.is_empty() {
return Ok(0);
}
let res_cnt = Self::check_arg_res_length_32bit(arg.len(), res.len(), arg1_only, res1_only)?;
self.peri
.set_argument_count(if arg1_only { AccessCount::One } else { AccessCount::Two });
self.peri
.set_result_count(if res1_only { AccessCount::One } else { AccessCount::Two });
self.peri.set_data_width(Width::Bits32, Width::Bits32);
let mut cnt = 0;
match arg1_only {
true => {
// To use cordic preload function, the first value is special.
// It is loaded to CORDIC WDATA register out side of loop
let first_value = arg[0];
// preload 1st value to CORDIC, to start the CORDIC calc
self.peri.write_argument(first_value);
for &arg1 in &arg[1..] {
// preload arg1 (for next calc)
self.peri.write_argument(arg1);
// then read current result out
res[cnt] = self.peri.read_result();
cnt += 1;
if !res1_only {
res[cnt] = self.peri.read_result();
cnt += 1;
}
}
// read the last result
res[cnt] = self.peri.read_result();
cnt += 1;
if !res1_only {
res[cnt] = self.peri.read_result();
// cnt += 1;
}
}
false => {
// To use cordic preload function, the first and last value is special.
// They are load to CORDIC WDATA register out side of loop
let first_value = arg[0];
let last_value = arg[arg.len() - 1];
let paired_args = &arg[1..arg.len() - 1];
// preload 1st value to CORDIC
self.peri.write_argument(first_value);
for args in paired_args.chunks(2) {
let arg2 = args[0];
let arg1 = args[1];
// load arg2 (for current calc) first, to start the CORDIC calc
self.peri.write_argument(arg2);
// preload arg1 (for next calc)
self.peri.write_argument(arg1);
// then read current result out
res[cnt] = self.peri.read_result();
cnt += 1;
if !res1_only {
res[cnt] = self.peri.read_result();
cnt += 1;
}
}
// load last value to CORDIC, and finish the calculation
self.peri.write_argument(last_value);
res[cnt] = self.peri.read_result();
cnt += 1;
if !res1_only {
res[cnt] = self.peri.read_result();
// cnt += 1;
}
}
}
// at this point cnt should be equal to res_cnt
Ok(res_cnt)
}
/// Run a async CORDIC calculation in q.1.31 format
///
/// Notice:
/// If you set `arg1_only` to `true`, please be sure ARG2 value has been set to desired value before.
/// This function won't set ARG2 to +1 before or after each round of calculation.
/// If you want to make sure ARG2 is set to +1, consider run [.reconfigure()](Self::reconfigure).
pub async fn async_calc_32bit(
&mut self,
write_dma: impl Peripheral<P = impl WriteDma<T>>,
read_dma: impl Peripheral<P = impl ReadDma<T>>,
arg: &[u32],
res: &mut [u32],
arg1_only: bool,
res1_only: bool,
) -> Result<usize, CordicError> {
if arg.is_empty() {
return Ok(0);
}
let res_cnt = Self::check_arg_res_length_32bit(arg.len(), res.len(), arg1_only, res1_only)?;
let active_res_buf = &mut res[..res_cnt];
into_ref!(write_dma, read_dma);
self.peri
.set_argument_count(if arg1_only { AccessCount::One } else { AccessCount::Two });
self.peri
.set_result_count(if res1_only { AccessCount::One } else { AccessCount::Two });
self.peri.set_data_width(Width::Bits32, Width::Bits32);
let write_req = write_dma.request();
let read_req = read_dma.request();
self.peri.enable_write_dma();
self.peri.enable_read_dma();
let _on_drop = OnDrop::new(|| {
self.peri.disable_write_dma();
self.peri.disable_read_dma();
});
unsafe {
let write_transfer = dma::Transfer::new_write(
&mut write_dma,
write_req,
arg,
T::regs().wdata().as_ptr() as *mut _,
Default::default(),
);
let read_transfer = dma::Transfer::new_read(
&mut read_dma,
read_req,
T::regs().rdata().as_ptr() as *mut _,
active_res_buf,
Default::default(),
);
embassy_futures::join::join(write_transfer, read_transfer).await;
}
Ok(res_cnt)
}
fn check_arg_res_length_32bit(
arg_len: usize,
res_len: usize,
arg1_only: bool,
res1_only: bool,
) -> Result<usize, CordicError> {
if !arg1_only && arg_len % 2 != 0 {
return Err(CordicError::ArgumentLengthIncorrect);
}
let mut minimal_res_length = arg_len;
if !res1_only {
minimal_res_length *= 2;
}
if !arg1_only {
minimal_res_length /= 2
}
if minimal_res_length > res_len {
return Err(CordicError::ResultLengthNotEnough);
}
Ok(minimal_res_length)
}
}
// q1.15 related
impl<'d, T: Instance> Cordic<'d, T> {
/// Run a blocking CORDIC calculation in q1.15 format
///
/// Notice::
/// User will take respond to merge two u16 arguments into one u32 data, and/or split one u32 data into two u16 results.
pub fn blocking_calc_16bit(&mut self, arg: &[u32], res: &mut [u32]) -> Result<usize, CordicError> {
if arg.is_empty() {
return Ok(0);
}
if arg.len() > res.len() {
return Err(CordicError::ResultLengthNotEnough);
}
let res_cnt = arg.len();
// In q1.15 mode, 1 write/read to access 2 arguments/results
self.peri.set_argument_count(AccessCount::One);
self.peri.set_result_count(AccessCount::One);
self.peri.set_data_width(Width::Bits16, Width::Bits16);
// To use cordic preload function, the first value is special.
// It is loaded to CORDIC WDATA register out side of loop
let first_value = arg[0];
// preload 1st value to CORDIC, to start the CORDIC calc
self.peri.write_argument(first_value);
let mut cnt = 0;
for &arg_val in &arg[1..] {
// preload arg_val (for next calc)
self.peri.write_argument(arg_val);
// then read current result out
res[cnt] = self.peri.read_result();
cnt += 1;
}
// read last result out
res[cnt] = self.peri.read_result();
// cnt += 1;
Ok(res_cnt)
}
/// Run a async CORDIC calculation in q1.15 format
///
/// Notice::
/// User will take respond to merge two u16 arguments into one u32 data, and/or split one u32 data into two u16 results.
pub async fn async_calc_16bit(
&mut self,
write_dma: impl Peripheral<P = impl WriteDma<T>>,
read_dma: impl Peripheral<P = impl ReadDma<T>>,
arg: &[u32],
res: &mut [u32],
) -> Result<usize, CordicError> {
if arg.is_empty() {
return Ok(0);
}
if arg.len() > res.len() {
return Err(CordicError::ResultLengthNotEnough);
}
let res_cnt = arg.len();
let active_res_buf = &mut res[..res_cnt];
into_ref!(write_dma, read_dma);
// In q1.15 mode, 1 write/read to access 2 arguments/results
self.peri.set_argument_count(AccessCount::One);
self.peri.set_result_count(AccessCount::One);
self.peri.set_data_width(Width::Bits16, Width::Bits16);
let write_req = write_dma.request();
let read_req = read_dma.request();
self.peri.enable_write_dma();
self.peri.enable_read_dma();
let _on_drop = OnDrop::new(|| {
self.peri.disable_write_dma();
self.peri.disable_read_dma();
});
unsafe {
let write_transfer = dma::Transfer::new_write(
&mut write_dma,
write_req,
arg,
T::regs().wdata().as_ptr() as *mut _,
Default::default(),
);
let read_transfer = dma::Transfer::new_read(
&mut read_dma,
read_req,
T::regs().rdata().as_ptr() as *mut _,
active_res_buf,
Default::default(),
);
embassy_futures::join::join(write_transfer, read_transfer).await;
}
Ok(res_cnt)
}
}
macro_rules! check_arg_value {
($func_arg1_name:ident, $func_arg2_name:ident, $float_type:ty) => {
impl<'d, T: Instance> Cordic<'d, T> {
/// check input value ARG1, SCALE and FUNCTION are compatible with each other
pub fn $func_arg1_name(&self, arg: $float_type) -> Result<(), ArgError> {
let config = &self.config;
use Function::*;
struct Arg1ErrInfo {
scale: Option<Scale>,
range: [f32; 2], // f32 is ok, it only used in error display
inclusive_upper_bound: bool,
}
let err_info = match config.function {
Cos | Sin | Phase | Modulus | Arctan if !(-1.0..=1.0).contains(arg) => Some(Arg1ErrInfo {
scale: None,
range: [-1.0, 1.0],
inclusive_upper_bound: true,
}),
Cosh | Sinh if !(-0.559..=0.559).contains(arg) => Some(Arg1ErrInfo {
scale: None,
range: [-0.559, 0.559],
inclusive_upper_bound: true,
}),
Arctanh if !(-0.403..=0.403).contains(arg) => Some(Arg1ErrInfo {
scale: None,
range: [-0.403, 0.403],
inclusive_upper_bound: true,
}),
Ln => match config.scale {
Scale::Arg1o2Res2 if !(0.0535..0.5).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1o2Res2),
range: [0.0535, 0.5],
inclusive_upper_bound: false,
}),
Scale::Arg1o4Res4 if !(0.25..0.75).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1o4Res4),
range: [0.25, 0.75],
inclusive_upper_bound: false,
}),
Scale::Arg1o8Res8 if !(0.375..0.875).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1o8Res8),
range: [0.375, 0.875],
inclusive_upper_bound: false,
}),
Scale::Arg1o16Res16 if !(0.4375..0.584).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1o16Res16),
range: [0.4375, 0.584],
inclusive_upper_bound: false,
}),
Scale::Arg1o2Res2 | Scale::Arg1o4Res4 | Scale::Arg1o8Res8 | Scale::Arg1o16Res16 => None,
_ => unreachable!(),
},
Sqrt => match config.scale {
Scale::Arg1Res1 if !(0.027..0.75).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1Res1),
range: [0.027, 0.75],
inclusive_upper_bound: false,
}),
Scale::Arg1o2Res2 if !(0.375..0.875).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1o2Res2),
range: [0.375, 0.875],
inclusive_upper_bound: false,
}),
Scale::Arg1o4Res4 if !(0.4375..0.584).contains(arg) => Some(Arg1ErrInfo {
scale: Some(Scale::Arg1o4Res4),
range: [0.4375, 0.584],
inclusive_upper_bound: false,
}),
Scale::Arg1Res1 | Scale::Arg1o2Res2 | Scale::Arg1o4Res4 => None,
_ => unreachable!(),
},
Cos | Sin | Phase | Modulus | Arctan | Cosh | Sinh | Arctanh => None,
};
if let Some(err) = err_info {
return Err(ArgError {
func: config.function,
scale: err.scale,
arg_range: err.range,
inclusive_upper_bound: err.inclusive_upper_bound,
arg_type: ArgType::Arg1,
});
}
Ok(())
}
/// check input value ARG2 and FUNCTION are compatible with each other
pub fn $func_arg2_name(&self, arg: $float_type) -> Result<(), ArgError> {
let config = &self.config;
use Function::*;
struct Arg2ErrInfo {
range: [f32; 2], // f32 is ok, it only used in error display
}
let err_info = match config.function {
Cos | Sin if !(0.0..=1.0).contains(arg) => Some(Arg2ErrInfo { range: [0.0, 1.0] }),
Phase | Modulus if !(-1.0..=1.0).contains(arg) => Some(Arg2ErrInfo { range: [-1.0, 1.0] }),
Cos | Sin | Phase | Modulus | Arctan | Cosh | Sinh | Arctanh | Ln | Sqrt => None,
};
if let Some(err) = err_info {
return Err(ArgError {
func: config.function,
scale: None,
arg_range: err.range,
inclusive_upper_bound: true,
arg_type: ArgType::Arg2,
});
}
Ok(())
}
}
};
}
check_arg_value!(check_f64_arg1, check_f64_arg2, &f64);
check_arg_value!(check_f32_arg1, check_f32_arg2, &f32);
foreach_interrupt!(
($inst:ident, cordic, $block:ident, GLOBAL, $irq:ident) => {
impl Instance for peripherals::$inst {
}
impl SealedInstance for peripherals::$inst {
fn regs() -> crate::pac::cordic::Cordic {
crate::pac::$inst
}
}
};
);
dma_trait!(WriteDma, Instance);
dma_trait!(ReadDma, Instance);

View File

@ -0,0 +1,116 @@
use super::*;
use crate::pac::cordic::vals;
/// Cordic instance
pub(super) trait SealedInstance {
/// Get access to CORDIC registers
fn regs() -> crate::pac::cordic::Cordic;
/// Set Function value
fn set_func(&self, func: Function) {
Self::regs()
.csr()
.modify(|v| v.set_func(vals::Func::from_bits(func as u8)));
}
/// Set Precision value
fn set_precision(&self, precision: Precision) {
Self::regs()
.csr()
.modify(|v| v.set_precision(vals::Precision::from_bits(precision as u8)))
}
/// Set Scale value
fn set_scale(&self, scale: Scale) {
Self::regs()
.csr()
.modify(|v| v.set_scale(vals::Scale::from_bits(scale as u8)))
}
/// Enable global interrupt
fn enable_irq(&self) {
Self::regs().csr().modify(|v| v.set_ien(true))
}
/// Disable global interrupt
fn disable_irq(&self) {
Self::regs().csr().modify(|v| v.set_ien(false))
}
/// Enable Read DMA
fn enable_read_dma(&self) {
Self::regs().csr().modify(|v| {
v.set_dmaren(true);
})
}
/// Disable Read DMA
fn disable_read_dma(&self) {
Self::regs().csr().modify(|v| {
v.set_dmaren(false);
})
}
/// Enable Write DMA
fn enable_write_dma(&self) {
Self::regs().csr().modify(|v| {
v.set_dmawen(true);
})
}
/// Disable Write DMA
fn disable_write_dma(&self) {
Self::regs().csr().modify(|v| {
v.set_dmawen(false);
})
}
/// Set NARGS value
fn set_argument_count(&self, n: AccessCount) {
Self::regs().csr().modify(|v| {
v.set_nargs(match n {
AccessCount::One => vals::Num::NUM1,
AccessCount::Two => vals::Num::NUM2,
})
})
}
/// Set NRES value
fn set_result_count(&self, n: AccessCount) {
Self::regs().csr().modify(|v| {
v.set_nres(match n {
AccessCount::One => vals::Num::NUM1,
AccessCount::Two => vals::Num::NUM2,
});
})
}
/// Set ARGSIZE and RESSIZE value
fn set_data_width(&self, arg: Width, res: Width) {
Self::regs().csr().modify(|v| {
v.set_argsize(match arg {
Width::Bits32 => vals::Size::BITS32,
Width::Bits16 => vals::Size::BITS16,
});
v.set_ressize(match res {
Width::Bits32 => vals::Size::BITS32,
Width::Bits16 => vals::Size::BITS16,
})
})
}
/// Read RRDY flag
fn ready_to_read(&self) -> bool {
Self::regs().csr().read().rrdy()
}
/// Write value to WDATA
fn write_argument(&self, arg: u32) {
Self::regs().wdata().write_value(arg)
}
/// Read value from RDATA
fn read_result(&self) -> u32 {
Self::regs().rdata().read()
}
}

View File

@ -0,0 +1,62 @@
//! Common math utils
use super::errors::NumberOutOfRange;
macro_rules! floating_fixed_convert {
($f_to_q:ident, $q_to_f:ident, $unsigned_bin_typ:ty, $signed_bin_typ:ty, $float_ty:ty, $offset:literal, $min_positive:literal) => {
/// convert float point to fixed point format
pub fn $f_to_q(value: $float_ty) -> Result<$unsigned_bin_typ, NumberOutOfRange> {
const MIN_POSITIVE: $float_ty = unsafe { core::mem::transmute($min_positive) };
if value < -1.0 {
return Err(NumberOutOfRange::BelowLowerBound)
}
if value > 1.0 {
return Err(NumberOutOfRange::AboveUpperBound)
}
let value = if 1.0 - MIN_POSITIVE < value && value <= 1.0 {
// make a exception for value between (1.0^{-x} , 1.0] float point,
// convert it to max representable value of q1.x format
(1.0 as $float_ty) - MIN_POSITIVE
} else {
value
};
// It's necessary to cast the float value to signed integer, before convert it to a unsigned value.
// Since value from register is actually a "signed value", a "as" cast will keep original binary format but mark it as a unsigned value for register writing.
// see https://doc.rust-lang.org/reference/expressions/operator-expr.html#numeric-cast
Ok((value * ((1 as $unsigned_bin_typ << $offset) as $float_ty)) as $signed_bin_typ as $unsigned_bin_typ)
}
#[inline(always)]
/// convert fixed point to float point format
pub fn $q_to_f(value: $unsigned_bin_typ) -> $float_ty {
// It's necessary to cast the unsigned integer to signed integer, before convert it to a float value.
// Since value from register is actually a "signed value", a "as" cast will keep original binary format but mark it as a signed value.
// see https://doc.rust-lang.org/reference/expressions/operator-expr.html#numeric-cast
(value as $signed_bin_typ as $float_ty) / ((1 as $unsigned_bin_typ << $offset) as $float_ty)
}
};
}
floating_fixed_convert!(
f64_to_q1_31,
q1_31_to_f64,
u32,
i32,
f64,
31,
0x3E00_0000_0000_0000u64 // binary form of 1f64^(-31)
);
floating_fixed_convert!(
f32_to_q1_15,
q1_15_to_f32,
u16,
i16,
f32,
15,
0x3800_0000u32 // binary form of 1f32^(-15)
);

View File

@ -32,6 +32,9 @@ pub mod timer;
pub mod adc; pub mod adc;
#[cfg(can)] #[cfg(can)]
pub mod can; pub mod can;
// FIXME: Cordic driver cause stm32u5a5zj crash
#[cfg(all(cordic, not(any(stm32u5a5, stm32u5a9))))]
pub mod cordic;
#[cfg(crc)] #[cfg(crc)]
pub mod crc; pub mod crc;
#[cfg(cryp)] #[cfg(cryp)]
@ -244,7 +247,7 @@ pub fn init(config: Config) -> Peripherals {
#[cfg(dbgmcu)] #[cfg(dbgmcu)]
crate::pac::DBGMCU.cr().modify(|cr| { crate::pac::DBGMCU.cr().modify(|cr| {
#[cfg(any(dbgmcu_h5))] #[cfg(dbgmcu_h5)]
{ {
cr.set_stop(config.enable_debug_during_sleep); cr.set_stop(config.enable_debug_during_sleep);
cr.set_standby(config.enable_debug_during_sleep); cr.set_standby(config.enable_debug_during_sleep);

View File

@ -0,0 +1,78 @@
#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::cordic::{self, utils};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut dp = embassy_stm32::init(Default::default());
let mut cordic = cordic::Cordic::new(
&mut dp.CORDIC,
unwrap!(cordic::Config::new(
cordic::Function::Sin,
Default::default(),
Default::default(),
)),
);
// for output buf, the length is not that strict, larger than minimal required is ok.
let mut output_f64 = [0f64; 19];
let mut output_u32 = [0u32; 21];
// tips:
// CORDIC peripheral has some strict on input value, you can also use ".check_argX_fXX()" methods
// to make sure your input values are compatible with current CORDIC setup.
let arg1 = [-1.0, -0.5, 0.0, 0.5, 1.0]; // for trigonometric function, the ARG1 value [-pi, pi] should be map to [-1, 1]
let arg2 = [0.5]; // and for Sin function, ARG2 should be in [0, 1]
let mut input_buf = [0u32; 9];
// convert input from floating point to fixed point
input_buf[0] = unwrap!(utils::f64_to_q1_31(arg1[0]));
input_buf[1] = unwrap!(utils::f64_to_q1_31(arg2[0]));
// If input length is small, blocking mode can be used to minimize overhead.
let cnt0 = unwrap!(cordic.blocking_calc_32bit(
&input_buf[..2], // input length is strict, since driver use its length to detect calculation count
&mut output_u32,
false,
false
));
// convert result from fixed point into floating point
for (&u32_val, f64_val) in output_u32[..cnt0].iter().zip(output_f64.iter_mut()) {
*f64_val = utils::q1_31_to_f64(u32_val);
}
// convert input from floating point to fixed point
//
// first value from arg1 is used, so truncate to arg1[1..]
for (&f64_val, u32_val) in arg1[1..].iter().zip(input_buf.iter_mut()) {
*u32_val = unwrap!(utils::f64_to_q1_31(f64_val));
}
// If calculation is a little longer, async mode can make use of DMA, and let core do some other stuff.
let cnt1 = unwrap!(
cordic
.async_calc_32bit(
&mut dp.GPDMA1_CH0,
&mut dp.GPDMA1_CH1,
&input_buf[..arg1.len() - 1], // limit input buf to its actual length
&mut output_u32,
true,
false
)
.await
);
// convert result from fixed point into floating point
for (&u32_val, f64_val) in output_u32[..cnt1].iter().zip(output_f64[cnt0..cnt0 + cnt1].iter_mut()) {
*f64_val = utils::q1_31_to_f64(u32_val);
}
println!("result: {}", output_f64[..cnt0 + cnt1]);
}

View File

@ -14,8 +14,8 @@ stm32f429zi = ["embassy-stm32/stm32f429zi", "chrono", "eth", "stop", "can", "not
stm32f446re = ["embassy-stm32/stm32f446re", "chrono", "stop", "can", "not-gpdma", "dac", "sdmmc"] stm32f446re = ["embassy-stm32/stm32f446re", "chrono", "stop", "can", "not-gpdma", "dac", "sdmmc"]
stm32f767zi = ["embassy-stm32/stm32f767zi", "chrono", "not-gpdma", "eth", "rng"] stm32f767zi = ["embassy-stm32/stm32f767zi", "chrono", "not-gpdma", "eth", "rng"]
stm32g071rb = ["embassy-stm32/stm32g071rb", "cm0", "not-gpdma", "dac", "ucpd"] stm32g071rb = ["embassy-stm32/stm32g071rb", "cm0", "not-gpdma", "dac", "ucpd"]
stm32g491re = ["embassy-stm32/stm32g491re", "chrono", "stop", "not-gpdma", "rng", "fdcan"] stm32g491re = ["embassy-stm32/stm32g491re", "chrono", "stop", "not-gpdma", "rng", "fdcan", "cordic"]
stm32h563zi = ["embassy-stm32/stm32h563zi", "chrono", "eth", "rng", "hash"] stm32h563zi = ["embassy-stm32/stm32h563zi", "chrono", "eth", "rng", "hash", "cordic"]
stm32h753zi = ["embassy-stm32/stm32h753zi", "chrono", "not-gpdma", "eth", "rng", "fdcan", "hash", "cryp"] stm32h753zi = ["embassy-stm32/stm32h753zi", "chrono", "not-gpdma", "eth", "rng", "fdcan", "hash", "cryp"]
stm32h755zi = ["embassy-stm32/stm32h755zi-cm7", "chrono", "not-gpdma", "eth", "dac", "rng", "fdcan", "hash", "cryp"] stm32h755zi = ["embassy-stm32/stm32h755zi-cm7", "chrono", "not-gpdma", "eth", "dac", "rng", "fdcan", "hash", "cryp"]
stm32h7a3zi = ["embassy-stm32/stm32h7a3zi", "not-gpdma", "rng", "fdcan"] stm32h7a3zi = ["embassy-stm32/stm32h7a3zi", "not-gpdma", "rng", "fdcan"]
@ -25,8 +25,8 @@ stm32l496zg = ["embassy-stm32/stm32l496zg", "not-gpdma", "rng"]
stm32l4a6zg = ["embassy-stm32/stm32l4a6zg", "chrono", "not-gpdma", "rng", "hash"] stm32l4a6zg = ["embassy-stm32/stm32l4a6zg", "chrono", "not-gpdma", "rng", "hash"]
stm32l4r5zi = ["embassy-stm32/stm32l4r5zi", "chrono", "not-gpdma", "rng"] stm32l4r5zi = ["embassy-stm32/stm32l4r5zi", "chrono", "not-gpdma", "rng"]
stm32l552ze = ["embassy-stm32/stm32l552ze", "not-gpdma", "rng", "hash"] stm32l552ze = ["embassy-stm32/stm32l552ze", "not-gpdma", "rng", "hash"]
stm32u585ai = ["embassy-stm32/stm32u585ai", "chrono", "rng", "hash"] stm32u585ai = ["embassy-stm32/stm32u585ai", "chrono", "rng", "hash", "cordic"]
stm32u5a5zj = ["embassy-stm32/stm32u5a5zj", "chrono", "rng", "hash"] stm32u5a5zj = ["embassy-stm32/stm32u5a5zj", "chrono", "rng", "hash"] # FIXME: cordic test cause it crash
stm32wb55rg = ["embassy-stm32/stm32wb55rg", "chrono", "not-gpdma", "ble", "mac" , "rng"] stm32wb55rg = ["embassy-stm32/stm32wb55rg", "chrono", "not-gpdma", "ble", "mac" , "rng"]
stm32wba52cg = ["embassy-stm32/stm32wba52cg", "chrono", "rng", "hash"] stm32wba52cg = ["embassy-stm32/stm32wba52cg", "chrono", "rng", "hash"]
stm32wl55jc = ["embassy-stm32/stm32wl55jc-cm4", "not-gpdma", "rng", "chrono"] stm32wl55jc = ["embassy-stm32/stm32wl55jc-cm4", "not-gpdma", "rng", "chrono"]
@ -48,6 +48,7 @@ embassy-stm32-wpan = []
not-gpdma = [] not-gpdma = []
dac = [] dac = []
ucpd = [] ucpd = []
cordic = ["dep:num-traits"]
cm0 = ["portable-atomic/unsafe-assume-single-core"] cm0 = ["portable-atomic/unsafe-assume-single-core"]
@ -83,6 +84,7 @@ chrono = { version = "^0.4", default-features = false, optional = true}
sha2 = { version = "0.10.8", default-features = false } sha2 = { version = "0.10.8", default-features = false }
hmac = "0.12.1" hmac = "0.12.1"
aes-gcm = {version = "0.10.3", default-features = false, features = ["aes", "heapless"] } aes-gcm = {version = "0.10.3", default-features = false, features = ["aes", "heapless"] }
num-traits = {version="0.2", default-features = false,features = ["libm"], optional = true}
# BEGIN TESTS # BEGIN TESTS
# Generated by gen_test.py. DO NOT EDIT. # Generated by gen_test.py. DO NOT EDIT.
@ -91,6 +93,11 @@ name = "can"
path = "src/bin/can.rs" path = "src/bin/can.rs"
required-features = [ "can",] required-features = [ "can",]
[[bin]]
name = "cordic"
path = "src/bin/cordic.rs"
required-features = [ "rng", "cordic",]
[[bin]] [[bin]]
name = "cryp" name = "cryp"
path = "src/bin/cryp.rs" path = "src/bin/cryp.rs"

View File

@ -14,7 +14,7 @@ for f in sorted(glob('./src/bin/*.rs')):
with open(f, 'r') as f: with open(f, 'r') as f:
for line in f: for line in f:
if line.startswith('// required-features:'): if line.startswith('// required-features:'):
features = line.split(':', 2)[1].strip().split(',') features = [feature.strip() for feature in line.split(':', 2)[1].strip().split(',')]
tests[name] = features tests[name] = features

View File

@ -0,0 +1,135 @@
// required-features: rng, cordic
// Test Cordic driver, with Q1.31 format, Sin function, at 24 iterations (aka PRECISION = 6), using DMA transfer
#![no_std]
#![no_main]
#[path = "../common.rs"]
mod common;
use common::*;
use embassy_executor::Spawner;
use embassy_stm32::cordic::utils;
use embassy_stm32::{bind_interrupts, cordic, peripherals, rng};
use num_traits::Float;
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
RNG => rng::InterruptHandler<peripherals::RNG>;
});
/* input value control, can be changed */
const INPUT_U32_COUNT: usize = 9;
const INPUT_U8_COUNT: usize = 4 * INPUT_U32_COUNT;
// Assume first calculation needs 2 arguments, the reset needs 1 argument.
// And all calculation generate 2 results.
const OUTPUT_LENGTH: usize = (INPUT_U32_COUNT - 1) * 2;
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let dp = embassy_stm32::init(config());
//
// use RNG generate random Q1.31 value
//
// we don't generate floating-point value, since not all binary value are valid floating-point value,
// and Q1.31 only accept a fixed range of value.
let mut rng = rng::Rng::new(dp.RNG, Irqs);
let mut input_buf_u8 = [0u8; INPUT_U8_COUNT];
defmt::unwrap!(rng.async_fill_bytes(&mut input_buf_u8).await);
// convert every [u8; 4] to a u32, for a Q1.31 value
let mut input_q1_31 = unsafe { core::mem::transmute::<[u8; INPUT_U8_COUNT], [u32; INPUT_U32_COUNT]>(input_buf_u8) };
// ARG2 for Sin function should be inside [0, 1], set MSB to 0 of a Q1.31 value, will make sure it's no less than 0.
input_q1_31[1] &= !(1u32 << 31);
//
// CORDIC calculation
//
let mut output_q1_31 = [0u32; OUTPUT_LENGTH];
// setup Cordic driver
let mut cordic = cordic::Cordic::new(
dp.CORDIC,
defmt::unwrap!(cordic::Config::new(
cordic::Function::Sin,
Default::default(),
Default::default(),
)),
);
#[cfg(feature = "stm32g491re")]
let (mut write_dma, mut read_dma) = (dp.DMA1_CH4, dp.DMA1_CH5);
#[cfg(any(feature = "stm32h563zi", feature = "stm32u585ai", feature = "stm32u5a5zj"))]
let (mut write_dma, mut read_dma) = (dp.GPDMA1_CH0, dp.GPDMA1_CH1);
// calculate first result using blocking mode
let cnt0 = defmt::unwrap!(cordic.blocking_calc_32bit(&input_q1_31[..2], &mut output_q1_31, false, false));
// calculate rest results using async mode
let cnt1 = defmt::unwrap!(
cordic
.async_calc_32bit(
&mut write_dma,
&mut read_dma,
&input_q1_31[2..],
&mut output_q1_31[cnt0..],
true,
false,
)
.await
);
// all output value length should be the same as our output buffer size
defmt::assert_eq!(cnt0 + cnt1, output_q1_31.len());
let mut cordic_result_f64 = [0.0f64; OUTPUT_LENGTH];
for (f64_val, u32_val) in cordic_result_f64.iter_mut().zip(output_q1_31) {
*f64_val = utils::q1_31_to_f64(u32_val);
}
//
// software calculation
//
let mut software_result_f64 = [0.0f64; OUTPUT_LENGTH];
let arg2 = utils::q1_31_to_f64(input_q1_31[1]);
for (&arg1, res) in input_q1_31
.iter()
.enumerate()
.filter_map(|(idx, val)| if idx != 1 { Some(val) } else { None })
.zip(software_result_f64.chunks_mut(2))
{
let arg1 = utils::q1_31_to_f64(arg1);
let (raw_res1, raw_res2) = (arg1 * core::f64::consts::PI).sin_cos();
(res[0], res[1]) = (raw_res1 * arg2, raw_res2 * arg2);
}
//
// check result are the same
//
for (cordic_res, software_res) in cordic_result_f64[..cnt0 + cnt1]
.chunks(2)
.zip(software_result_f64.chunks(2))
{
for (cord_res, soft_res) in cordic_res.iter().zip(software_res.iter()) {
// 2.0.powi(-19) is the max residual error for Sin function, in q1.31 format, with 24 iterations (aka PRECISION = 6)
defmt::assert!((cord_res - soft_res).abs() <= 2.0.powi(-19));
}
}
info!("Test OK");
cortex_m::asm::bkpt();
}