Create flash partition for shared flash access

This commit is contained in:
Rasmus Melchior Jacobsen 2023-05-26 21:40:12 +02:00
parent a8b426d0fe
commit 62e799da09
6 changed files with 308 additions and 127 deletions

View File

@ -31,4 +31,5 @@ nb = "1.0.0"
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }
[dev-dependencies] [dev-dependencies]
critical-section = { version = "1.1.1", features = ["std"] }
futures-test = "0.3.17" futures-test = "0.3.17"

View File

@ -167,66 +167,18 @@ mod tests {
use embedded_storage_async::nor_flash::NorFlash; use embedded_storage_async::nor_flash::NorFlash;
use super::*; use super::*;
use crate::flash::mem_flash::MemFlash;
extern crate std;
#[derive(Default)]
struct FakeFlash(Vec<(u32, u32)>);
impl embedded_storage::nor_flash::ErrorType for FakeFlash {
type Error = std::convert::Infallible;
}
impl embedded_storage_async::nor_flash::ReadNorFlash for FakeFlash {
const READ_SIZE: usize = 1;
async fn read(&mut self, _offset: u32, _bytes: &mut [u8]) -> Result<(), Self::Error> {
unimplemented!()
}
fn capacity(&self) -> usize {
unimplemented!()
}
}
impl embedded_storage_async::nor_flash::NorFlash for FakeFlash {
const WRITE_SIZE: usize = 4;
const ERASE_SIZE: usize = 128;
async fn write(&mut self, _offset: u32, _bytes: &[u8]) -> Result<(), Self::Error> {
unimplemented!()
}
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.0.push((from, to));
Ok(())
}
}
#[futures_test::test] #[futures_test::test]
async fn can_erase() { async fn can_erase() {
let fake = FakeFlash::default(); let flash = MemFlash::<1024, 128, 4>::new(0x00);
let mut yielding = YieldingAsync::new(fake); let mut yielding = YieldingAsync::new(flash);
yielding.erase(0, 256).await.unwrap(); yielding.erase(0, 256).await.unwrap();
let fake = yielding.wrapped; let flash = yielding.wrapped;
assert_eq!(2, fake.0.len()); assert_eq!(2, flash.erases.len());
assert_eq!((0, 128), fake.0[0]); assert_eq!((0, 128), flash.erases[0]);
assert_eq!((128, 256), fake.0[1]); assert_eq!((128, 256), flash.erases[1]);
}
#[futures_test::test]
async fn can_erase_wrong_erase_size() {
let fake = FakeFlash::default();
let mut yielding = YieldingAsync::new(fake);
yielding.erase(0, 257).await.unwrap();
let fake = yielding.wrapped;
assert_eq!(3, fake.0.len());
assert_eq!((0, 128), fake.0[0]);
assert_eq!((128, 256), fake.0[1]);
assert_eq!((256, 257), fake.0[2]);
} }
} }

View File

@ -1,5 +1,3 @@
//! Utilities related to flash.
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, ReadNorFlash}; use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, ReadNorFlash};
#[cfg(feature = "nightly")] #[cfg(feature = "nightly")]
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash}; use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
@ -192,18 +190,21 @@ where
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use embedded_storage::nor_flash::{NorFlash, ReadNorFlash};
use super::ConcatFlash;
use crate::flash::mem_flash::MemFlash;
#[test] #[test]
fn can_write_and_read_across_flashes() { fn can_write_and_read_across_flashes() {
let first = MemFlash::<64, 16, 4>::new(); let first = MemFlash::<64, 16, 4>::default();
let second = MemFlash::<64, 64, 4>::new(); let second = MemFlash::<64, 64, 4>::default();
let mut f = ConcatFlash::new(first, second); let mut f = ConcatFlash::new(first, second);
f.write(60, &[0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88]).unwrap(); f.write(60, &[0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88]).unwrap();
assert_eq!(&[0x11, 0x22, 0x33, 0x44], &f.0 .0[60..]); assert_eq!(&[0x11, 0x22, 0x33, 0x44], &f.0.mem[60..]);
assert_eq!(&[0x55, 0x66, 0x77, 0x88], &f.1 .0[0..4]); assert_eq!(&[0x55, 0x66, 0x77, 0x88], &f.1.mem[0..4]);
let mut read_buf = [0; 8]; let mut read_buf = [0; 8];
f.read(60, &mut read_buf).unwrap(); f.read(60, &mut read_buf).unwrap();
@ -213,74 +214,15 @@ mod tests {
#[test] #[test]
fn can_erase_across_flashes() { fn can_erase_across_flashes() {
let mut first = MemFlash::<128, 16, 4>::new(); let first = MemFlash::<128, 16, 4>::new(0x00);
let mut second = MemFlash::<128, 64, 4>::new(); let second = MemFlash::<128, 64, 4>::new(0x00);
first.0.fill(0x00);
second.0.fill(0x00);
let mut f = ConcatFlash::new(first, second); let mut f = ConcatFlash::new(first, second);
f.erase(64, 192).unwrap(); f.erase(64, 192).unwrap();
assert_eq!(&[0x00; 64], &f.0 .0[0..64]); assert_eq!(&[0x00; 64], &f.0.mem[0..64]);
assert_eq!(&[0xff; 64], &f.0 .0[64..128]); assert_eq!(&[0xff; 64], &f.0.mem[64..128]);
assert_eq!(&[0xff; 64], &f.1 .0[0..64]); assert_eq!(&[0xff; 64], &f.1.mem[0..64]);
assert_eq!(&[0x00; 64], &f.1 .0[64..128]); assert_eq!(&[0x00; 64], &f.1.mem[64..128]);
}
pub struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize>([u8; SIZE]);
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE> {
pub const fn new() -> Self {
Self([0xff; SIZE])
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = core::convert::Infallible;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
let len = bytes.len();
bytes.copy_from_slice(&self.0[offset as usize..offset as usize + len]);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
let from = from as usize;
let to = to as usize;
assert_eq!(0, from % ERASE_SIZE);
assert_eq!(0, to % ERASE_SIZE);
self.0[from..to].fill(0xff);
Ok(())
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
let offset = offset as usize;
assert_eq!(0, bytes.len() % WRITE_SIZE);
assert_eq!(0, offset % WRITE_SIZE);
assert!(offset + bytes.len() <= SIZE);
self.0[offset..offset + bytes.len()].copy_from_slice(bytes);
Ok(())
}
} }
} }

View File

@ -0,0 +1,127 @@
use alloc::vec::Vec;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
extern crate alloc;
pub(crate) struct MemFlash<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> {
pub mem: [u8; SIZE],
pub writes: Vec<(u32, usize)>,
pub erases: Vec<(u32, u32)>,
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE> {
#[allow(unused)]
pub const fn new(fill: u8) -> Self {
Self {
mem: [fill; SIZE],
writes: Vec::new(),
erases: Vec::new(),
}
}
fn read(&mut self, offset: u32, bytes: &mut [u8]) {
let len = bytes.len();
bytes.copy_from_slice(&self.mem[offset as usize..offset as usize + len]);
}
fn write(&mut self, offset: u32, bytes: &[u8]) {
self.writes.push((offset, bytes.len()));
let offset = offset as usize;
assert_eq!(0, bytes.len() % WRITE_SIZE);
assert_eq!(0, offset % WRITE_SIZE);
assert!(offset + bytes.len() <= SIZE);
self.mem[offset..offset + bytes.len()].copy_from_slice(bytes);
}
fn erase(&mut self, from: u32, to: u32) {
self.erases.push((from, to));
let from = from as usize;
let to = to as usize;
assert_eq!(0, from % ERASE_SIZE);
assert_eq!(0, to % ERASE_SIZE);
self.mem[from..to].fill(0xff);
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> Default
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
fn default() -> Self {
Self::new(0xff)
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ErrorType
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
type Error = core::convert::Infallible;
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> ReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.read(offset, bytes);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> NorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.write(offset, bytes);
Ok(())
}
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.erase(from, to);
Ok(())
}
}
#[cfg(feature = "nightly")]
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncReadNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const READ_SIZE: usize = 1;
async fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.read(offset, bytes);
Ok(())
}
fn capacity(&self) -> usize {
SIZE
}
}
#[cfg(feature = "nightly")]
impl<const SIZE: usize, const ERASE_SIZE: usize, const WRITE_SIZE: usize> AsyncNorFlash
for MemFlash<SIZE, ERASE_SIZE, WRITE_SIZE>
{
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
async fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.write(offset, bytes);
Ok(())
}
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.erase(from, to);
Ok(())
}
}

View File

@ -0,0 +1,9 @@
//! Utilities related to flash.
mod concat_flash;
#[cfg(test)]
pub(crate) mod mem_flash;
mod partition;
pub use concat_flash::ConcatFlash;
pub use partition::Partition;

View File

@ -0,0 +1,150 @@
use embassy_sync::blocking_mutex::raw::RawMutex;
use embassy_sync::mutex::Mutex;
use embedded_storage::nor_flash::{ErrorType, NorFlashError, NorFlashErrorKind};
#[cfg(feature = "nightly")]
use embedded_storage_async::nor_flash::{NorFlash, ReadNorFlash};
/// A logical partition of an underlying shared flash
///
/// A partition holds an offset and a size of the flash,
/// and is restricted to operate with that range.
/// There is no guarantee that muliple partitions on the same flash
/// operate on mutually exclusive ranges - such a separation is up to
/// the user to guarantee.
pub struct Partition<'a, M: RawMutex, T> {
flash: &'a Mutex<M, T>,
offset: u32,
size: u32,
}
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error<T> {
Partition,
OutOfBounds,
Flash(T),
}
impl<'a, M: RawMutex, T> Partition<'a, M, T> {
/// Create a new partition
pub const fn new(flash: &'a Mutex<M, T>, offset: u32, size: u32) -> Self {
Self { flash, offset, size }
}
}
impl<T: NorFlashError> NorFlashError for Error<T> {
fn kind(&self) -> NorFlashErrorKind {
match self {
Error::Partition => NorFlashErrorKind::Other,
Error::OutOfBounds => NorFlashErrorKind::OutOfBounds,
Error::Flash(f) => f.kind(),
}
}
}
impl<M: RawMutex, T: ErrorType> ErrorType for Partition<'_, M, T> {
type Error = Error<T::Error>;
}
#[cfg(feature = "nightly")]
impl<M: RawMutex, T: ReadNorFlash> ReadNorFlash for Partition<'_, M, T> {
const READ_SIZE: usize = T::READ_SIZE;
async fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
if self.offset % T::READ_SIZE as u32 != 0 || self.size % T::READ_SIZE as u32 != 0 {
return Err(Error::Partition);
}
if offset + bytes.len() as u32 > self.size {
return Err(Error::OutOfBounds);
}
let mut flash = self.flash.lock().await;
flash.read(self.offset + offset, bytes).await.map_err(Error::Flash)
}
fn capacity(&self) -> usize {
self.size as usize
}
}
#[cfg(feature = "nightly")]
impl<M: RawMutex, T: NorFlash> NorFlash for Partition<'_, M, T> {
const WRITE_SIZE: usize = T::WRITE_SIZE;
const ERASE_SIZE: usize = T::ERASE_SIZE;
async fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
if self.offset % T::WRITE_SIZE as u32 != 0 || self.size % T::WRITE_SIZE as u32 != 0 {
return Err(Error::Partition);
}
if offset + bytes.len() as u32 > self.size {
return Err(Error::OutOfBounds);
}
let mut flash = self.flash.lock().await;
flash.write(self.offset + offset, bytes).await.map_err(Error::Flash)
}
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
if self.offset % T::ERASE_SIZE as u32 != 0 || self.size % T::ERASE_SIZE as u32 != 0 {
return Err(Error::Partition);
}
if to > self.size {
return Err(Error::OutOfBounds);
}
let mut flash = self.flash.lock().await;
flash
.erase(self.offset + from, self.offset + to)
.await
.map_err(Error::Flash)
}
}
#[cfg(test)]
mod tests {
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
use super::*;
use crate::flash::mem_flash::MemFlash;
#[futures_test::test]
async fn can_read() {
let mut flash = MemFlash::<1024, 128, 4>::default();
flash.mem[12..20].fill(0xAA);
let flash = Mutex::<NoopRawMutex, _>::new(flash);
let mut partition = Partition::new(&flash, 8, 12);
let mut read_buf = [0; 8];
partition.read(4, &mut read_buf).await.unwrap();
assert!(read_buf.iter().position(|&x| x != 0xAA).is_none());
}
#[futures_test::test]
async fn can_write() {
let flash = MemFlash::<1024, 128, 4>::default();
let flash = Mutex::<NoopRawMutex, _>::new(flash);
let mut partition = Partition::new(&flash, 8, 12);
let write_buf = [0xAA; 8];
partition.write(4, &write_buf).await.unwrap();
let flash = flash.try_lock().unwrap();
assert!(flash.mem[12..20].iter().position(|&x| x != 0xAA).is_none());
}
#[futures_test::test]
async fn can_erase() {
let flash = MemFlash::<1024, 128, 4>::new(0x00);
let flash = Mutex::<NoopRawMutex, _>::new(flash);
let mut partition = Partition::new(&flash, 128, 256);
partition.erase(0, 128).await.unwrap();
let flash = flash.try_lock().unwrap();
assert!(flash.mem[128..256].iter().position(|&x| x != 0xFF).is_none());
}
}