feat: add SPDIFRX driver

This commit is contained in:
elagil 2024-11-18 20:51:22 +01:00
parent 050d3d1a09
commit 62dbdcd45a
3 changed files with 350 additions and 0 deletions

View File

@ -1220,6 +1220,17 @@ fn main() {
impl_dac_pin!( #peri, #pin_name, #ch);
})
}
if regs.kind == "spdifrx" {
let peri = format_ident!("{}", p.name);
let pin_name = format_ident!("{}", pin.pin);
let af = pin.af.unwrap_or(0);
let sel: u8 = pin.signal.strip_prefix("IN").unwrap().parse().unwrap();
g.extend(quote! {
impl_spdifrx_pin!( #peri, #pin_name, #af, #sel);
})
}
}
}
}
@ -1244,6 +1255,7 @@ fn main() {
(("sai", "B"), quote!(crate::sai::Dma<B>)),
(("spi", "RX"), quote!(crate::spi::RxDma)),
(("spi", "TX"), quote!(crate::spi::TxDma)),
(("spdifrx", "RX"), quote!(crate::spdifrx::Dma)),
(("i2c", "RX"), quote!(crate::i2c::RxDma)),
(("i2c", "TX"), quote!(crate::i2c::TxDma)),
(("dcmi", "DCMI"), quote!(crate::dcmi::FrameDma)),

View File

@ -107,6 +107,8 @@ pub mod rtc;
pub mod sai;
#[cfg(sdmmc)]
pub mod sdmmc;
#[cfg(spdifrx)]
pub mod spdifrx;
#[cfg(spi)]
pub mod spi;
#[cfg(tsc)]

View File

@ -0,0 +1,336 @@
//! S/PDIF receiver
#![macro_use]
#![cfg_attr(gpdma, allow(unused))]
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use crate::dma::ringbuffer::Error as RingbufferError;
pub use crate::dma::word;
#[cfg(not(gpdma))]
use crate::dma::ReadableRingBuffer;
use crate::dma::{Channel, TransferOptions};
use crate::gpio::{AfType, AnyPin, Pull, SealedPin as _};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::spdifrx::Spdifrx as Regs;
use crate::rcc::{RccInfo, SealedRccPeripheral};
use crate::{interrupt, peripherals, Peripheral};
/// Possible S/PDIF preamble types.
#[allow(dead_code)]
#[repr(u8)]
enum PreambleType {
Unused = 0x00,
/// The preamble changes to preamble “B” once every 192 frames to identify the start of the block structure used to
/// organize the channel status and user information.
B = 0x01,
/// The first sub-frame (left or “A” channel in stereophonic operation and primary channel in monophonic operation)
/// normally starts with preamble “M”
M = 0x02,
/// The second sub-frame (right or “B” channel in stereophonic operation and secondary channel in monophonic
/// operation) always starts with preamble “W”.
W = 0x03,
}
macro_rules! new_spdifrx_pin {
($name:ident, $af_type:expr) => {{
let pin = $name.into_ref();
let input_sel = pin.input_sel();
pin.set_as_af(pin.af_num(), $af_type);
(Some(pin.map_into()), input_sel)
}};
}
macro_rules! impl_spdifrx_pin {
($inst:ident, $pin:ident, $af:expr, $sel:expr) => {
impl crate::spdifrx::InPin<peripherals::$inst> for crate::peripherals::$pin {
fn af_num(&self) -> u8 {
$af
}
fn input_sel(&self) -> u8 {
$sel
}
}
};
}
/// Ring-buffered SPDIFRX driver.
///
/// Data is read by DMAs and stored in a ring buffer.
#[cfg(not(gpdma))]
pub struct Spdifrx<'d, T: Instance> {
_peri: PeripheralRef<'d, T>,
spdifrx_in: Option<PeripheralRef<'d, AnyPin>>,
data_ring_buffer: ReadableRingBuffer<'d, u32>,
}
/// Gives the address of the data register.
fn dr_address(r: Regs) -> *mut u32 {
#[cfg(spdifrx_v1)]
let address = r.dr().as_ptr() as _;
#[cfg(spdifrx_h7)]
let address = r.fmt0_dr().as_ptr() as _; // All fmtx_dr() implementations have the same address.
return address;
}
/// Gives the address of the channel status register.
#[allow(unused)]
fn csr_address(r: Regs) -> *mut u32 {
r.csr().as_ptr() as _
}
/// Select the channel for capturing control information.
pub enum ControlChannelSelection {
/// Capture control info from channel A.
A,
/// Capture control info from channel B.
B,
}
/// Configuration options for the SPDIFRX driver.
pub struct Config {
/// Select the channel for capturing control information.
pub control_channel_selection: ControlChannelSelection,
}
/// S/PDIF errors.
#[derive(Debug)]
pub enum Error {
/// DMA overrun error.
RingbufferError(RingbufferError),
/// Left/right channel synchronization error.
ChannelSyncError,
}
impl From<RingbufferError> for Error {
fn from(error: RingbufferError) -> Self {
Self::RingbufferError(error)
}
}
impl Default for Config {
fn default() -> Self {
Self {
control_channel_selection: ControlChannelSelection::A,
}
}
}
#[cfg(not(gpdma))]
impl<'d, T: Instance> Spdifrx<'d, T> {
fn dma_opts() -> TransferOptions {
TransferOptions {
half_transfer_ir: true,
// new_write() and new_read() always use circular mode
..Default::default()
}
}
/// Create a new `Spdifrx` instance.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::GlobalInterrupt, GlobalInterruptHandler<T>> + 'd,
config: Config,
spdifrx_in: impl Peripheral<P = impl InPin<T>> + 'd,
data_dma: impl Peripheral<P = impl Channel + Dma<T>> + 'd,
data_dma_buf: &'d mut [u32],
) -> Self {
let (spdifrx_in, input_sel) = new_spdifrx_pin!(spdifrx_in, AfType::input(Pull::None));
Self::setup(config, input_sel);
into_ref!(peri, data_dma);
let regs = T::info().regs;
let dr_request = data_dma.request();
let dr_ring_buffer =
unsafe { ReadableRingBuffer::new(data_dma, dr_request, dr_address(regs), data_dma_buf, Self::dma_opts()) };
Self {
_peri: peri,
spdifrx_in,
data_ring_buffer: dr_ring_buffer,
}
}
fn setup(config: Config, input_sel: u8) {
T::info().rcc.enable_and_reset();
T::GlobalInterrupt::unpend();
unsafe { T::GlobalInterrupt::enable() };
let regs = T::info().regs;
regs.imr().write(|imr| {
imr.set_ifeie(true); // Enables interrupts for TERR, SERR, FERR.
imr.set_syncdie(true); // Enables SYNCD interrupt.
});
regs.cr().write(|cr| {
cr.set_spdifen(0x00); // Disable SPDIF receiver synchronization.
cr.set_rxdmaen(true); // Use RX DMA for data. Enabled on `read`.
cr.set_cbdmaen(false); // Do not capture channel info.
cr.set_rxsteo(true); // Operate in stereo mode.
cr.set_drfmt(0x01); // Data is left-aligned (MSB).
// Disable all status fields in the data register.
// Status can be obtained directly with the status register DMA.
cr.set_pmsk(false); // Write parity bit to the data register. FIXME: Add parity check.
cr.set_vmsk(false); // Write validity to the data register.
cr.set_cumsk(true); // Do not write C and U bits to the data register.
cr.set_ptmsk(false); // Write preamble bits to the data register.
cr.set_chsel(match config.control_channel_selection {
ControlChannelSelection::A => false,
ControlChannelSelection::B => true,
}); // Select channel status source.
cr.set_nbtr(0x02); // 16 attempts are allowed.
cr.set_wfa(true); // Wait for activity before going to synchronization phase.
cr.set_insel(input_sel); // Input pin selection.
#[cfg(stm32h7)]
cr.set_cksen(true); // Generate a symbol clock.
#[cfg(stm32h7)]
cr.set_cksbkpen(false); // Do not generate a backup symbol clock.
});
}
/// Start the SPDIFRX driver.
pub fn start(&mut self) {
self.data_ring_buffer.start();
T::info().regs.cr().modify(|cr| {
cr.set_spdifen(0x03); // Enable S/PDIF receiver.
});
}
/// Read from the SPDIFRX data ring buffer.
///
/// SPDIFRX is always receiving data in the background. This function pops already-received
/// data from the buffer.
///
/// If there's less than `data.len()` data in the buffer, this waits until there is.
pub async fn read(&mut self, data: &mut [u32]) -> Result<(), Error> {
self.data_ring_buffer.read_exact(data).await?;
let first_preamble = (data[0] >> 4) & 0b11_u32;
if (first_preamble as u8) == (PreambleType::W as u8) {
trace!("S/PDIF left/right mismatch");
// Resynchronize until the first sample is for the left channel.
self.data_ring_buffer.clear();
return Err(Error::ChannelSyncError);
};
for sample in data.as_mut() {
if (*sample & (0x0002_u32)) == 0x0001 {
// Discard invalid samples, setting them to mute level.
*sample = 0;
} else {
// Discard status information in the lowest byte.
*sample &= 0xFFFFFF00;
}
}
Ok(())
}
}
#[cfg(not(gpdma))]
impl<'d, T: Instance> Drop for Spdifrx<'d, T> {
fn drop(&mut self) {
T::info().regs.cr().modify(|cr| cr.set_spdifen(0x00));
self.spdifrx_in.as_ref().map(|x| x.set_as_disconnected());
}
}
struct State {
#[allow(unused)]
waker: AtomicWaker,
}
impl State {
const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
struct Info {
regs: crate::pac::spdifrx::Spdifrx,
rcc: RccInfo,
}
peri_trait!(
irqs: [GlobalInterrupt],
);
/// SPIDFRX pin trait
pub trait InPin<T: Instance>: crate::gpio::Pin {
/// Get the GPIO AF number needed to use this pin.
fn af_num(&self) -> u8;
/// Get the SPIDFRX INSEL number needed to use this pin.
fn input_sel(&self) -> u8;
}
dma_trait!(Dma, Instance);
/// Global interrupt handler.
pub struct GlobalInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::GlobalInterrupt> for GlobalInterruptHandler<T> {
unsafe fn on_interrupt() {
T::state().waker.wake();
let regs = T::info().regs;
let sr = regs.sr().read();
if sr.serr() || sr.terr() || sr.ferr() {
trace!("SPDIFRX error, resync");
// Clear errors by disabling SPDIFRX, then reenable.
regs.cr().modify(|cr| cr.set_spdifen(0x00));
regs.cr().modify(|cr| cr.set_spdifen(0x03));
} else if sr.syncd() {
// Synchronization was successful.
trace!("SPDIFRX sync success");
}
// Clear interrupt flags.
regs.ifcr().write(|ifcr| {
ifcr.set_perrcf(true); // Clears parity error flag.
ifcr.set_ovrcf(true); // Clears overrun error flag.
ifcr.set_sbdcf(true); // Clears synchronization block detected flag.
ifcr.set_syncdcf(true); // Clears SYNCD from SR (was read above).
});
}
}
foreach_peripheral!(
(spdifrx, $inst:ident) => {
#[allow(private_interfaces)]
impl SealedInstance for peripherals::$inst {
fn info() -> &'static Info {
static INFO: Info = Info{
regs: crate::pac::$inst,
rcc: crate::peripherals::$inst::RCC_INFO,
};
&INFO
}
fn state() -> &'static State {
static STATE: State = State::new();
&STATE
}
}
impl Instance for peripherals::$inst {
type GlobalInterrupt = crate::_generated::peripheral_interrupts::$inst::GLOBAL;
}
};
);