Add CRYP DMA support. Updated example.

This commit is contained in:
Caleb Garrett 2024-03-12 12:01:14 -04:00
parent 6e9e8eeb5f
commit 61050a16d5
3 changed files with 597 additions and 37 deletions

View File

@ -1121,6 +1121,8 @@ fn main() {
(("dac", "CH2"), quote!(crate::dac::DacDma2)),
(("timer", "UP"), quote!(crate::timer::UpDma)),
(("hash", "IN"), quote!(crate::hash::Dma)),
(("cryp", "IN"), quote!(crate::cryp::DmaIn)),
(("cryp", "OUT"), quote!(crate::cryp::DmaOut)),
(("timer", "CH1"), quote!(crate::timer::Ch1Dma)),
(("timer", "CH2"), quote!(crate::timer::Ch2Dma)),
(("timer", "CH3"), quote!(crate::timer::Ch3Dma)),

View File

@ -2,12 +2,14 @@
#[cfg(any(cryp_v2, cryp_v3))]
use core::cmp::min;
use core::marker::PhantomData;
use core::ptr;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use crate::dma::{NoDma, Priority, Transfer, TransferOptions};
use crate::interrupt::typelevel::Interrupt;
use crate::{dma::NoDma, interrupt, pac, peripherals, Peripheral};
use crate::{interrupt, pac, peripherals, Peripheral};
const DES_BLOCK_SIZE: usize = 8; // 64 bits
const AES_BLOCK_SIZE: usize = 16; // 128 bits
@ -55,18 +57,25 @@ pub trait Cipher<'c> {
fn prepare_key(&self, _p: &pac::cryp::Cryp) {}
/// Performs any cipher-specific initialization.
fn init_phase<T: Instance, D>(&self, _p: &pac::cryp::Cryp, _cryp: &Cryp<T, D>) {}
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, _p: &pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {}
/// Performs any cipher-specific initialization.
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, _p: &pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{}
/// Called prior to processing the last data block for cipher-specific operations.
fn pre_final_block(&self, _p: &pac::cryp::Cryp, _dir: Direction, _padding_len: usize) -> [u32; 4] {
fn pre_final(&self, _p: &pac::cryp::Cryp, _dir: Direction, _padding_len: usize) -> [u32; 4] {
return [0; 4];
}
/// Called after processing the last data block for cipher-specific operations.
fn post_final_block<T: Instance, D>(
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
_p: &pac::cryp::Cryp,
_cryp: &Cryp<T, D>,
_cryp: &Cryp<T, DmaIn, DmaOut>,
_dir: Direction,
_int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
@ -74,6 +83,21 @@ pub trait Cipher<'c> {
) {
}
/// Called after processing the last data block for cipher-specific operations.
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
_p: &pac::cryp::Cryp,
_cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
_dir: Direction,
_int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
_padding_mask: [u8; 16],
)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{}
/// Called prior to processing the first associated data block for cipher-specific operations.
fn get_header_block(&self) -> &[u8] {
return [0; 0].as_slice();
@ -449,14 +473,20 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase<T: Instance, D>(&self, p: &pac::cryp::Cryp, _cryp: &Cryp<T, D>) {
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: &pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: &pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
#[cfg(cryp_v2)]
fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
fn pre_final(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
//Handle special GCM partial block process.
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
@ -477,10 +507,10 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
}
#[cfg(cryp_v2)]
fn post_final_block<T: Instance, D>(
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
p: &pac::cryp::Cryp,
cryp: &Cryp<T, D>,
cryp: &Cryp<T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
@ -501,6 +531,43 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
cryp.read_bytes_blocking(Self::BLOCK_SIZE, int_data);
}
}
#[cfg(cryp_v2)]
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
p: &pac::cryp::Cryp,
cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
padding_mask: [u8; AES_BLOCK_SIZE],
)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
if dir == Direction::Encrypt {
// Handle special GCM partial block process.
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(0));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
p.cr().modify(|w| w.set_crypen(true));
p.cr().modify(|w| w.set_gcm_ccmph(3));
let mut out_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let read = Cryp::<T, DmaIn, DmaOut>::read_bytes(&mut cryp.outdma, Self::BLOCK_SIZE, &mut out_data);
let write = Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, int_data);
embassy_futures::join::join(read, write).await;
int_data.copy_from_slice(&out_data);
}
}
}
#[cfg(any(cryp_v2, cryp_v3))]
@ -549,14 +616,20 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase<T: Instance, D>(&self, p: &pac::cryp::Cryp, _cryp: &Cryp<T, D>) {
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: &pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: &pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
#[cfg(cryp_v2)]
fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
fn pre_final(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
//Handle special GCM partial block process.
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
@ -577,10 +650,10 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
}
#[cfg(cryp_v2)]
fn post_final_block<T: Instance, D>(
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
p: &pac::cryp::Cryp,
cryp: &Cryp<T, D>,
cryp: &Cryp<T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
@ -601,6 +674,41 @@ impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
cryp.read_bytes_blocking(Self::BLOCK_SIZE, int_data);
}
}
#[cfg(cryp_v2)]
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
p: &pac::cryp::Cryp,
cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
padding_mask: [u8; AES_BLOCK_SIZE],
)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
if dir == Direction::Encrypt {
// Handle special GCM partial block process.
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(0));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
p.cr().modify(|w| w.set_crypen(true));
p.cr().modify(|w| w.set_gcm_ccmph(3));
let mut out_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let read = Cryp::<T, DmaIn, DmaOut>::read_bytes(&mut cryp.outdma, Self::BLOCK_SIZE, &mut out_data);
let write = Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, int_data);
embassy_futures::join::join(read, write).await;
}
}
}
#[cfg(any(cryp_v2, cryp_v3))]
@ -707,7 +815,7 @@ impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cip
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase<T: Instance, D>(&self, p: &pac::cryp::Cryp, cryp: &Cryp<T, D>) {
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: &pac::cryp::Cryp, cryp: &Cryp<T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
cryp.write_bytes_blocking(Self::BLOCK_SIZE, &self.block0);
@ -716,12 +824,25 @@ impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cip
while p.cr().read().crypen() {}
}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: &pac::cryp::Cryp, cryp: &mut Cryp<'_, T, DmaIn, DmaOut>)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
p.cr().modify(|w| w.set_gcm_ccmph(0));
Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, &self.block0).await;
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
fn get_header_block(&self) -> &[u8] {
return &self.aad_header[0..self.aad_header_len];
}
#[cfg(cryp_v2)]
fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
fn pre_final(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
//Handle special CCM partial block process.
let mut temp1 = [0; 4];
if dir == Direction::Decrypt {
@ -747,10 +868,10 @@ impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cip
}
#[cfg(cryp_v2)]
fn post_final_block<T: Instance, D>(
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
p: &pac::cryp::Cryp,
cryp: &Cryp<T, D>,
cryp: &Cryp<T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
temp1: [u32; 4],
@ -782,6 +903,47 @@ impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cip
cryp.write_words_blocking(Self::BLOCK_SIZE, &in_data);
}
}
#[cfg(cryp_v2)]
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
p: &pac::cryp::Cryp,
cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
temp1: [u32; 4],
padding_mask: [u8; 16],
)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
if dir == Direction::Decrypt {
//Handle special CCM partial block process.
let mut temp2 = [0; 4];
temp2[0] = p.csgcmccmr(0).read().swap_bytes();
temp2[1] = p.csgcmccmr(1).read().swap_bytes();
temp2[2] = p.csgcmccmr(2).read().swap_bytes();
temp2[3] = p.csgcmccmr(3).read().swap_bytes();
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_gcm_ccmph(3));
// Header phase
p.cr().modify(|w| w.set_gcm_ccmph(1));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
let mut in_data: [u32; 4] = [0; 4];
for i in 0..in_data.len() {
let mut int_bytes: [u8; 4] = [0; 4];
int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]);
let int_word = u32::from_le_bytes(int_bytes);
in_data[i] = int_word;
in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
}
Cryp::<T, DmaIn, DmaOut>::write_words(&mut cryp.indma, Self::BLOCK_SIZE, &in_data).await;
}
}
}
#[cfg(any(cryp_v2, cryp_v3))]
@ -849,18 +1011,18 @@ pub enum Direction {
}
/// Crypto Accelerator Driver
pub struct Cryp<'d, T: Instance, D = NoDma> {
pub struct Cryp<'d, T: Instance, DmaIn = NoDma, DmaOut = NoDma> {
_peripheral: PeripheralRef<'d, T>,
indma: PeripheralRef<'d, D>,
outdma: PeripheralRef<'d, D>,
indma: PeripheralRef<'d, DmaIn>,
outdma: PeripheralRef<'d, DmaOut>,
}
impl<'d, T: Instance, D> Cryp<'d, T, D> {
impl<'d, T: Instance, DmaIn, DmaOut> Cryp<'d, T, DmaIn, DmaOut> {
/// Create a new CRYP driver.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
indma: impl Peripheral<P = D> + 'd,
outdma: impl Peripheral<P = D> + 'd,
indma: impl Peripheral<P = DmaIn> + 'd,
outdma: impl Peripheral<P = DmaOut> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
T::enable_and_reset();
@ -881,7 +1043,7 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
/// Key size must be 128, 192, or 256 bits.
/// Initialization vector must only be supplied if necessary.
/// Panics if there is any mismatch in parameters, such as an incorrect IV length or invalid mode.
pub fn start<'c, C: Cipher<'c> + CipherSized + IVSized>(&self, cipher: &'c C, dir: Direction) -> Context<'c, C> {
pub fn start_blocking<'c, C: Cipher<'c> + CipherSized + IVSized>(&self, cipher: &'c C, dir: Direction) -> Context<'c, C> {
let mut ctx: Context<'c, C> = Context {
dir,
last_block_processed: false,
@ -948,7 +1110,89 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
// Flush in/out FIFOs
T::regs().cr().modify(|w| w.fflush());
ctx.cipher.init_phase(&T::regs(), self);
ctx.cipher.init_phase_blocking(&T::regs(), self);
self.store_context(&mut ctx);
ctx
}
/// Start a new cipher operation.
/// Key size must be 128, 192, or 256 bits.
/// Initialization vector must only be supplied if necessary.
/// Panics if there is any mismatch in parameters, such as an incorrect IV length or invalid mode.
pub async fn start<'c, C: Cipher<'c> + CipherSized + IVSized>(&mut self, cipher: &'c C, dir: Direction) -> Context<'c, C>
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
let mut ctx: Context<'c, C> = Context {
dir,
last_block_processed: false,
cr: 0,
iv: [0; 4],
csgcmccm: [0; 8],
csgcm: [0; 8],
aad_complete: false,
header_len: 0,
payload_len: 0,
cipher: cipher,
phantom_data: PhantomData,
header_processed: false,
aad_buffer: [0; 16],
aad_buffer_len: 0,
};
T::regs().cr().modify(|w| w.set_crypen(false));
let key = ctx.cipher.key();
if key.len() == (128 / 8) {
T::regs().cr().modify(|w| w.set_keysize(0));
} else if key.len() == (192 / 8) {
T::regs().cr().modify(|w| w.set_keysize(1));
} else if key.len() == (256 / 8) {
T::regs().cr().modify(|w| w.set_keysize(2));
}
self.load_key(key);
// Set data type to 8-bit. This will match software implementations.
T::regs().cr().modify(|w| w.set_datatype(2));
ctx.cipher.prepare_key(&T::regs());
ctx.cipher.set_algomode(&T::regs());
// Set encrypt/decrypt
if dir == Direction::Encrypt {
T::regs().cr().modify(|w| w.set_algodir(false));
} else {
T::regs().cr().modify(|w| w.set_algodir(true));
}
// Load the IV into the registers.
let iv = ctx.cipher.iv();
let mut full_iv: [u8; 16] = [0; 16];
full_iv[0..iv.len()].copy_from_slice(iv);
let mut iv_idx = 0;
let mut iv_word: [u8; 4] = [0; 4];
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word));
// Flush in/out FIFOs
T::regs().cr().modify(|w| w.fflush());
ctx.cipher.init_phase(&T::regs(), self).await;
self.store_context(&mut ctx);
@ -1053,6 +1297,107 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
self.store_context(ctx);
}
#[cfg(any(cryp_v2, cryp_v3))]
/// Controls the header phase of cipher processing.
/// This function is only valid for GCM, CCM, and GMAC modes.
/// It only needs to be called if using one of these modes and there is associated data.
/// All AAD must be supplied to this function prior to starting the payload phase with `payload_blocking`.
/// The AAD must be supplied in multiples of the block size (128 bits), except when supplying the last block.
/// When supplying the last block of AAD, `last_aad_block` must be `true`.
pub async fn aad<
'c,
const TAG_SIZE: usize,
C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
>(
&mut self,
ctx: &mut Context<'c, C>,
aad: &[u8],
last_aad_block: bool,
)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
self.load_context(ctx);
// Perform checks for correctness.
if ctx.aad_complete {
panic!("Cannot update AAD after starting payload!")
}
ctx.header_len += aad.len() as u64;
// Header phase
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
T::regs().cr().modify(|w| w.set_crypen(true));
// First write the header B1 block if not yet written.
if !ctx.header_processed {
ctx.header_processed = true;
let header = ctx.cipher.get_header_block();
ctx.aad_buffer[0..header.len()].copy_from_slice(header);
ctx.aad_buffer_len += header.len();
}
// Fill the header block to make a full block.
let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
ctx.aad_buffer_len += len_to_copy;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
let mut aad_len_remaining = aad.len() - len_to_copy;
if ctx.aad_buffer_len < C::BLOCK_SIZE {
// The buffer isn't full and this is the last buffer, so process it as is (already padded).
if last_aad_block {
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
assert_eq!(T::regs().sr().read().ifem(), true);
// Switch to payload phase.
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
} else {
// Just return because we don't yet have a full block to process.
return;
}
} else {
// Load the full block from the buffer.
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
assert_eq!(T::regs().sr().read().ifem(), true);
}
// Handle a partial block that is passed in.
ctx.aad_buffer_len = 0;
let leftovers = aad_len_remaining % C::BLOCK_SIZE;
ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
ctx.aad_buffer_len += leftovers;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
aad_len_remaining -= leftovers;
assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
// Load full data blocks into core.
let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
let start_index = len_to_copy;
let end_index = start_index + (C::BLOCK_SIZE * num_full_blocks);
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &aad[start_index..end_index]).await;
if last_aad_block {
if leftovers > 0 {
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
assert_eq!(T::regs().sr().read().ifem(), true);
}
// Switch to payload phase.
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
}
self.store_context(ctx);
}
/// Performs encryption/decryption on the provided context.
/// The context determines algorithm, mode, and state of the crypto accelerator.
/// When the last piece of data is supplied, `last_block` should be `true`.
@ -1118,7 +1463,7 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
// Handle the final block, which is incomplete.
if last_block_remainder > 0 {
let padding_len = C::BLOCK_SIZE - last_block_remainder;
let temp1 = ctx.cipher.pre_final_block(&T::regs(), ctx.dir, padding_len);
let temp1 = ctx.cipher.pre_final(&T::regs(), ctx.dir, padding_len);
let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
@ -1134,7 +1479,102 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
let mut mask: [u8; 16] = [0; 16];
mask[..last_block_remainder].fill(0xFF);
ctx.cipher
.post_final_block(&T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask);
.post_final_blocking(&T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask);
}
ctx.payload_len += input.len() as u64;
self.store_context(ctx);
}
/// Performs encryption/decryption on the provided context.
/// The context determines algorithm, mode, and state of the crypto accelerator.
/// When the last piece of data is supplied, `last_block` should be `true`.
/// This function panics under various mismatches of parameters.
/// Input and output buffer lengths must match.
/// Data must be a multiple of block size (128-bits for AES, 64-bits for DES) for CBC and ECB modes.
/// Padding or ciphertext stealing must be managed by the application for these modes.
/// Data must also be a multiple of block size unless `last_block` is `true`.
pub async fn payload<'c, C: Cipher<'c> + CipherSized + IVSized>(
&mut self,
ctx: &mut Context<'c, C>,
input: &[u8],
output: &mut [u8],
last_block: bool,
)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
self.load_context(ctx);
let last_block_remainder = input.len() % C::BLOCK_SIZE;
// Perform checks for correctness.
if !ctx.aad_complete && ctx.header_len > 0 {
panic!("Additional associated data must be processed first!");
} else if !ctx.aad_complete {
#[cfg(any(cryp_v2, cryp_v3))]
{
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
T::regs().cr().modify(|w| w.set_crypen(true));
}
}
if ctx.last_block_processed {
panic!("The last block has already been processed!");
}
if input.len() > output.len() {
panic!("Output buffer length must match input length.");
}
if !last_block {
if last_block_remainder != 0 {
panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
}
}
if C::REQUIRES_PADDING {
if last_block_remainder != 0 {
panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE);
}
}
if last_block {
ctx.last_block_processed = true;
}
// Load data into core, block by block.
let num_full_blocks = input.len() / C::BLOCK_SIZE;
for block in 0..num_full_blocks {
let index = block * C::BLOCK_SIZE;
// Read block out
let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut output[index..index + 4]);
// Write block in
let write = Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &input[index..index + 4]);
embassy_futures::join::join(read, write).await;
}
// Handle the final block, which is incomplete.
if last_block_remainder > 0 {
let padding_len = C::BLOCK_SIZE - last_block_remainder;
let temp1 = ctx.cipher.pre_final(&T::regs(), ctx.dir, padding_len);
let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut intermediate_data);
let write = Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &last_block);
embassy_futures::join::join(read, write).await;
// Handle the last block depending on mode.
let output_len = output.len();
output[output_len - last_block_remainder..output_len]
.copy_from_slice(&intermediate_data[0..last_block_remainder]);
let mut mask: [u8; 16] = [0; 16];
mask[..last_block_remainder].fill(0xFF);
ctx.cipher
.post_final(&T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask).await;
}
ctx.payload_len += input.len() as u64;
@ -1188,6 +1628,50 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
tag
}
#[cfg(any(cryp_v2, cryp_v3))]
/// This function only needs to be called for GCM, CCM, and GMAC modes to
/// generate an authentication tag.
pub async fn finish<'c, const TAG_SIZE: usize, C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>>(&mut self, mut ctx: Context<'c, C>) -> [u8; TAG_SIZE]
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
self.load_context(&mut ctx);
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
T::regs().cr().modify(|w| w.set_crypen(true));
let headerlen1: u32 = ((ctx.header_len * 8) >> 32) as u32;
let headerlen2: u32 = (ctx.header_len * 8) as u32;
let payloadlen1: u32 = ((ctx.payload_len * 8) >> 32) as u32;
let payloadlen2: u32 = (ctx.payload_len * 8) as u32;
#[cfg(cryp_v2)]
let footer: [u32; 4] = [
headerlen1.swap_bytes(),
headerlen2.swap_bytes(),
payloadlen1.swap_bytes(),
payloadlen2.swap_bytes(),
];
#[cfg(cryp_v3)]
let footer: [u32; 4] = [headerlen1, headerlen2, payloadlen1, payloadlen2];
let write = Self::write_words(&mut self.indma, C::BLOCK_SIZE, &footer);
let mut full_tag: [u8; 16] = [0; 16];
let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut full_tag);
embassy_futures::join::join(read, write).await;
let mut tag: [u8; TAG_SIZE] = [0; TAG_SIZE];
tag.copy_from_slice(&full_tag[0..TAG_SIZE]);
T::regs().cr().modify(|w| w.set_crypen(false));
tag
}
fn load_key(&self, key: &[u8]) {
// Load the key into the registers.
let mut keyidx = 0;
@ -1288,6 +1772,30 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
}
}
async fn write_bytes(dma: &mut PeripheralRef<'_, DmaIn>, block_size: usize, blocks: &[u8])
where
DmaIn: crate::cryp::DmaIn<T>,
{
if blocks.len() == 0 {
return;
}
// Ensure input is a multiple of block size.
assert_eq!(blocks.len() % block_size, 0);
// Configure DMA to transfer input to crypto core.
let dma_request = dma.request();
let dst_ptr = T::regs().din().as_ptr();
let num_words = blocks.len() / 4;
let src_ptr = ptr::slice_from_raw_parts(blocks.as_ptr().cast(), num_words);
let options = TransferOptions {
priority: Priority::High,
..Default::default()
};
let dma_transfer = unsafe { Transfer::new_write_raw(dma, dma_request, src_ptr, dst_ptr, options) };
T::regs().dmacr().modify(|w| w.set_dien(true));
// Wait for the transfer to complete.
dma_transfer.await;
}
fn write_words_blocking(&self, block_size: usize, blocks: &[u32]) {
assert_eq!((blocks.len() * 4) % block_size, 0);
let mut byte_counter: usize = 0;
@ -1301,6 +1809,30 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
}
}
async fn write_words(dma: &mut PeripheralRef<'_, DmaIn>, block_size: usize, blocks: &[u32])
where
DmaIn: crate::cryp::DmaIn<T>,
{
if blocks.len() == 0 {
return;
}
// Ensure input is a multiple of block size.
assert_eq!((blocks.len() * 4) % block_size, 0);
// Configure DMA to transfer input to crypto core.
let dma_request = dma.request();
let dst_ptr = T::regs().din().as_ptr();
let num_words = blocks.len();
let src_ptr = ptr::slice_from_raw_parts(blocks.as_ptr().cast(), num_words);
let options = TransferOptions {
priority: Priority::High,
..Default::default()
};
let dma_transfer = unsafe { Transfer::new_write_raw(dma, dma_request, src_ptr, dst_ptr, options) };
T::regs().dmacr().modify(|w| w.set_dien(true));
// Wait for the transfer to complete.
dma_transfer.await;
}
fn read_bytes_blocking(&self, block_size: usize, blocks: &mut [u8]) {
// Block until there is output to read.
while !T::regs().sr().read().ofne() {}
@ -1315,6 +1847,30 @@ impl<'d, T: Instance, D> Cryp<'d, T, D> {
index += 4;
}
}
async fn read_bytes(dma: &mut PeripheralRef<'_, DmaOut>, block_size: usize, blocks: &mut [u8])
where
DmaOut: crate::cryp::DmaOut<T>,
{
if blocks.len() == 0 {
return;
}
// Ensure input is a multiple of block size.
assert_eq!(blocks.len() % block_size, 0);
// Configure DMA to get output from crypto core.
let dma_request = dma.request();
let src_ptr = T::regs().dout().as_ptr();
let num_words = blocks.len() / 4;
let dst_ptr = ptr::slice_from_raw_parts_mut(blocks.as_mut_ptr().cast(), num_words);
let options = TransferOptions {
priority: Priority::VeryHigh,
..Default::default()
};
let dma_transfer = unsafe { Transfer::new_read_raw(dma, dma_request, src_ptr, dst_ptr, options) };
T::regs().dmacr().modify(|w| w.set_doen(true));
// Wait for the transfer to complete.
dma_transfer.await;
}
}
pub(crate) mod sealed {
@ -1344,3 +1900,6 @@ foreach_interrupt!(
}
};
);
dma_trait!(DmaIn, Instance);
dma_trait!(DmaOut, Instance);

View File

@ -6,7 +6,6 @@ use aes_gcm::aead::{AeadInPlace, KeyInit};
use aes_gcm::Aes128Gcm;
use defmt::info;
use embassy_executor::Spawner;
use embassy_stm32::dma::NoDma;
use embassy_stm32::{
bind_interrupts,
cryp::{self, *},
@ -27,7 +26,7 @@ async fn main(_spawner: Spawner) -> ! {
let payload: &[u8] = b"hello world";
let aad: &[u8] = b"additional data";
let hw_cryp = Cryp::new(p.CRYP, NoDma, NoDma, Irqs);
let mut hw_cryp = Cryp::new(p.CRYP, p.DMA2_CH6, p.DMA2_CH5, Irqs);
let key: [u8; 16] = [0; 16];
let mut ciphertext: [u8; 11] = [0; 11];
let mut plaintext: [u8; 11] = [0; 11];
@ -37,16 +36,16 @@ async fn main(_spawner: Spawner) -> ! {
// Encrypt in hardware using AES-GCM 128-bit
let aes_gcm = AesGcm::new(&key, &iv);
let mut gcm_encrypt = hw_cryp.start(&aes_gcm, Direction::Encrypt);
hw_cryp.aad_blocking(&mut gcm_encrypt, aad, true);
hw_cryp.payload_blocking(&mut gcm_encrypt, payload, &mut ciphertext, true);
let encrypt_tag = hw_cryp.finish_blocking(gcm_encrypt);
let mut gcm_encrypt = hw_cryp.start(&aes_gcm, Direction::Encrypt).await;
hw_cryp.aad(&mut gcm_encrypt, aad, true).await;
hw_cryp.payload(&mut gcm_encrypt, payload, &mut ciphertext, true).await;
let encrypt_tag = hw_cryp.finish(gcm_encrypt).await;
// Decrypt in hardware using AES-GCM 128-bit
let mut gcm_decrypt = hw_cryp.start(&aes_gcm, Direction::Decrypt);
hw_cryp.aad_blocking(&mut gcm_decrypt, aad, true);
hw_cryp.payload_blocking(&mut gcm_decrypt, &ciphertext, &mut plaintext, true);
let decrypt_tag = hw_cryp.finish_blocking(gcm_decrypt);
let mut gcm_decrypt = hw_cryp.start(&aes_gcm, Direction::Decrypt).await;
hw_cryp.aad(&mut gcm_decrypt, aad, true).await;
hw_cryp.payload(&mut gcm_decrypt, &ciphertext, &mut plaintext, true).await;
let decrypt_tag = hw_cryp.finish(gcm_decrypt).await;
let hw_end_time = Instant::now();
let hw_execution_time = hw_end_time - hw_start_time;