Merge pull request #2713 from sgoll/i2c-blocking-transaction

stm32/i2c(v1): Implement blocking transactions
This commit is contained in:
Dario Nieuwenhuis 2024-03-20 12:40:13 +00:00 committed by GitHub
commit 56e01d969f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 229 additions and 62 deletions

View File

@ -311,10 +311,10 @@ impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
self.blocking_transaction(address, operations)
}
}

View File

@ -10,6 +10,7 @@ use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
use embassy_hal_internal::drop::OnDrop;
use embedded_hal_1::i2c::Operation;
use super::*;
use crate::dma::Transfer;
@ -41,6 +42,68 @@ pub unsafe fn on_interrupt<T: Instance>() {
});
}
/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
#[derive(Copy, Clone)]
enum FrameOptions {
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in operation and last frame overall in this
/// transaction.
FirstAndLastFrame,
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
/// not the last frame overall.
FirstFrame,
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
/// frame in a read operation.
FirstAndNextFrame,
/// `[ACK]` Middle frame in a read operation (neither first nor last).
NextFrame,
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
LastFrame,
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
LastFrameNoStop,
}
impl FrameOptions {
/// Sends start or repeated start condition before transfer.
fn send_start(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
}
}
/// Sends stop condition after transfer.
fn send_stop(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::LastFrame => true,
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
}
}
/// Sends NACK after last byte received, indicating end of read operation.
fn send_nack(self) -> bool {
match self {
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
Self::FirstAndNextFrame | Self::NextFrame => false,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub(crate) fn init(&mut self, freq: Hertz, _config: Config) {
T::regs().cr1().modify(|reg| {
@ -124,46 +187,57 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(sr1)
}
fn write_bytes(&mut self, addr: u8, bytes: &[u8], timeout: Timeout) -> Result<(), Error> {
// Send a START condition
fn write_bytes(&mut self, addr: u8, bytes: &[u8], timeout: Timeout, frame: FrameOptions) -> Result<(), Error> {
if frame.send_start() {
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
// Wait until START condition was generated
while !Self::check_and_clear_error_flags()?.start() {
timeout.check()?;
// Wait until START condition was generated
while !Self::check_and_clear_error_flags()?.start() {
timeout.check()?;
}
// Also wait until signalled we're master and everything is waiting for us
while {
Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
} {
timeout.check()?;
}
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr(addr << 1));
// Wait until address was sent
// Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !Self::check_and_clear_error_flags()?.addr() {
timeout.check()?;
}
// Clear condition by reading SR2
let _ = T::regs().sr2().read();
}
// Also wait until signalled we're master and everything is waiting for us
while {
Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
} {
timeout.check()?;
}
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr(addr << 1));
// Wait until address was sent
// Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !Self::check_and_clear_error_flags()?.addr() {
timeout.check()?;
}
// Clear condition by reading SR2
let _ = T::regs().sr2().read();
// Send bytes
for c in bytes {
self.send_byte(*c, timeout)?;
}
if frame.send_stop() {
// Send a STOP condition
T::regs().cr1().modify(|reg| reg.set_stop(true));
// Wait for STOP condition to transmit.
while T::regs().cr1().read().stop() {
timeout.check()?;
}
}
// Fallthrough is success
Ok(())
}
@ -205,8 +279,18 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(value)
}
fn blocking_read_timeout(&mut self, addr: u8, buffer: &mut [u8], timeout: Timeout) -> Result<(), Error> {
if let Some((last, buffer)) = buffer.split_last_mut() {
fn blocking_read_timeout(
&mut self,
addr: u8,
buffer: &mut [u8],
timeout: Timeout,
frame: FrameOptions,
) -> Result<(), Error> {
let Some((last, buffer)) = buffer.split_last_mut() else {
return Err(Error::Overrun);
};
if frame.send_start() {
// Send a START condition and set ACK bit
T::regs().cr1().modify(|reg| {
reg.set_start(true);
@ -237,49 +321,45 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Clear condition by reading SR2
let _ = T::regs().sr2().read();
}
// Receive bytes into buffer
for c in buffer {
*c = self.recv_byte(timeout)?;
}
// Receive bytes into buffer
for c in buffer {
*c = self.recv_byte(timeout)?;
}
// Prepare to send NACK then STOP after next byte
T::regs().cr1().modify(|reg| {
// Prepare to send NACK then STOP after next byte
T::regs().cr1().modify(|reg| {
if frame.send_nack() {
reg.set_ack(false);
}
if frame.send_stop() {
reg.set_stop(true);
});
}
});
// Receive last byte
*last = self.recv_byte(timeout)?;
// Receive last byte
*last = self.recv_byte(timeout)?;
if frame.send_stop() {
// Wait for the STOP to be sent.
while T::regs().cr1().read().stop() {
timeout.check()?;
}
// Fallthrough is success
Ok(())
} else {
Err(Error::Overrun)
}
// Fallthrough is success
Ok(())
}
/// Blocking read.
pub fn blocking_read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Error> {
self.blocking_read_timeout(addr, read, self.timeout())
self.blocking_read_timeout(addr, read, self.timeout(), FrameOptions::FirstAndLastFrame)
}
/// Blocking write.
pub fn blocking_write(&mut self, addr: u8, write: &[u8]) -> Result<(), Error> {
let timeout = self.timeout();
self.write_bytes(addr, write, timeout)?;
// Send a STOP condition
T::regs().cr1().modify(|reg| reg.set_stop(true));
// Wait for STOP condition to transmit.
while T::regs().cr1().read().stop() {
timeout.check()?;
}
self.write_bytes(addr, write, self.timeout(), FrameOptions::FirstAndLastFrame)?;
// Fallthrough is success
Ok(())
@ -287,10 +367,85 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
/// Blocking write, restart, read.
pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
// stop condition below.
if read.is_empty() {
return Err(Error::Overrun);
}
let timeout = self.timeout();
self.write_bytes(addr, write, timeout)?;
self.blocking_read_timeout(addr, read, timeout)?;
self.write_bytes(addr, write, timeout, FrameOptions::FirstFrame)?;
self.blocking_read_timeout(addr, read, timeout, FrameOptions::FirstAndLastFrame)?;
Ok(())
}
/// Blocking transaction with operations.
///
/// Consecutive operations of same type are merged. See [transaction contract] for details.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
// stop condition below.
if operations.iter().any(|op| match op {
Operation::Read(read) => read.is_empty(),
Operation::Write(_) => false,
}) {
return Err(Error::Overrun);
}
let timeout = self.timeout();
let mut operations = operations.iter_mut();
let mut prev_op: Option<&mut Operation<'_>> = None;
let mut next_op = operations.next();
while let Some(op) = next_op {
next_op = operations.next();
// Check if this is the first frame of this type. This is the case for the first overall
// frame in the transaction and whenever the type of operation changes.
let first_frame =
match (prev_op.as_ref(), &op) {
(None, _) => true,
(Some(Operation::Read(_)), Operation::Write(_))
| (Some(Operation::Write(_)), Operation::Read(_)) => true,
(Some(Operation::Read(_)), Operation::Read(_))
| (Some(Operation::Write(_)), Operation::Write(_)) => false,
};
let frame = match (first_frame, next_op.as_ref()) {
// If this is the first frame of this type, we generate a (repeated) start condition
// but have to consider the next operation: if it is the last, we generate the final
// stop condition. Otherwise, we branch on the operation: with read operations, only
// the last byte overall (before a write operation or the end of the transaction) is
// to be NACK'd, i.e. if another read operation follows, we must ACK this last byte.
(true, None) => FrameOptions::FirstAndLastFrame,
// Make sure to keep sending ACK for last byte in read operation when it is followed
// by another consecutive read operation. If the current operation is write, this is
// identical to `FirstFrame`.
(true, Some(Operation::Read(_))) => FrameOptions::FirstAndNextFrame,
// Otherwise, send NACK for last byte (in read operation). (For write, this does not
// matter and could also be `FirstAndNextFrame`.)
(true, Some(Operation::Write(_))) => FrameOptions::FirstFrame,
// If this is not the first frame of its type, we do not generate a (repeated) start
// condition. Otherwise, we branch the same way as above.
(false, None) => FrameOptions::LastFrame,
(false, Some(Operation::Read(_))) => FrameOptions::NextFrame,
(false, Some(Operation::Write(_))) => FrameOptions::LastFrameNoStop,
};
match op {
Operation::Read(read) => self.blocking_read_timeout(addr, read, timeout, frame)?,
Operation::Write(write) => self.write_bytes(addr, write, timeout, frame)?,
}
prev_op = Some(op);
}
Ok(())
}

View File

@ -4,6 +4,7 @@ use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::drop::OnDrop;
use embedded_hal_1::i2c::Operation;
use super::*;
use crate::dma::Transfer;
@ -579,6 +580,17 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Automatic Stop
}
/// Blocking transaction with operations.
///
/// Consecutive operations of same type are merged. See [transaction contract] for details.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
let _ = addr;
let _ = operations;
todo!()
}
/// Blocking write multiple buffers.
///
/// The buffers are concatenated in a single write transaction.