mirror of
https://github.com/embassy-rs/embassy.git
synced 2025-02-19 18:32:42 +00:00
Merge pull request #2713 from sgoll/i2c-blocking-transaction
stm32/i2c(v1): Implement blocking transactions
This commit is contained in:
commit
56e01d969f
@ -311,10 +311,10 @@ impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
|
||||
|
||||
fn transaction(
|
||||
&mut self,
|
||||
_address: u8,
|
||||
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
|
||||
address: u8,
|
||||
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
|
||||
) -> Result<(), Self::Error> {
|
||||
todo!();
|
||||
self.blocking_transaction(address, operations)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,7 @@ use core::task::Poll;
|
||||
use embassy_embedded_hal::SetConfig;
|
||||
use embassy_futures::select::{select, Either};
|
||||
use embassy_hal_internal::drop::OnDrop;
|
||||
use embedded_hal_1::i2c::Operation;
|
||||
|
||||
use super::*;
|
||||
use crate::dma::Transfer;
|
||||
@ -41,6 +42,68 @@ pub unsafe fn on_interrupt<T: Instance>() {
|
||||
});
|
||||
}
|
||||
|
||||
/// Frame type in I2C transaction.
|
||||
///
|
||||
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
|
||||
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
|
||||
/// ACK or NACK after the last byte received.
|
||||
///
|
||||
/// For write operations, the following options are identical because they differ only in the (N)ACK
|
||||
/// treatment relevant for read operations:
|
||||
///
|
||||
/// - `FirstFrame` and `FirstAndNextFrame`
|
||||
/// - `NextFrame` and `LastFrameNoStop`
|
||||
///
|
||||
/// Abbreviations used below:
|
||||
///
|
||||
/// - `ST` = start condition
|
||||
/// - `SR` = repeated start condition
|
||||
/// - `SP` = stop condition
|
||||
#[derive(Copy, Clone)]
|
||||
enum FrameOptions {
|
||||
/// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in operation and last frame overall in this
|
||||
/// transaction.
|
||||
FirstAndLastFrame,
|
||||
/// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
|
||||
/// not the last frame overall.
|
||||
FirstFrame,
|
||||
/// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
|
||||
/// frame in a read operation.
|
||||
FirstAndNextFrame,
|
||||
/// `[ACK]` Middle frame in a read operation (neither first nor last).
|
||||
NextFrame,
|
||||
/// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
|
||||
LastFrame,
|
||||
/// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
|
||||
LastFrameNoStop,
|
||||
}
|
||||
|
||||
impl FrameOptions {
|
||||
/// Sends start or repeated start condition before transfer.
|
||||
fn send_start(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
|
||||
Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends stop condition after transfer.
|
||||
fn send_stop(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::LastFrame => true,
|
||||
Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends NACK after last byte received, indicating end of read operation.
|
||||
fn send_nack(self) -> bool {
|
||||
match self {
|
||||
Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
|
||||
Self::FirstAndNextFrame | Self::NextFrame => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
pub(crate) fn init(&mut self, freq: Hertz, _config: Config) {
|
||||
T::regs().cr1().modify(|reg| {
|
||||
@ -124,46 +187,57 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
Ok(sr1)
|
||||
}
|
||||
|
||||
fn write_bytes(&mut self, addr: u8, bytes: &[u8], timeout: Timeout) -> Result<(), Error> {
|
||||
// Send a START condition
|
||||
fn write_bytes(&mut self, addr: u8, bytes: &[u8], timeout: Timeout, frame: FrameOptions) -> Result<(), Error> {
|
||||
if frame.send_start() {
|
||||
// Send a START condition
|
||||
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_start(true);
|
||||
});
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_start(true);
|
||||
});
|
||||
|
||||
// Wait until START condition was generated
|
||||
while !Self::check_and_clear_error_flags()?.start() {
|
||||
timeout.check()?;
|
||||
// Wait until START condition was generated
|
||||
while !Self::check_and_clear_error_flags()?.start() {
|
||||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Also wait until signalled we're master and everything is waiting for us
|
||||
while {
|
||||
Self::check_and_clear_error_flags()?;
|
||||
|
||||
let sr2 = T::regs().sr2().read();
|
||||
!sr2.msl() && !sr2.busy()
|
||||
} {
|
||||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Set up current address, we're trying to talk to
|
||||
T::regs().dr().write(|reg| reg.set_dr(addr << 1));
|
||||
|
||||
// Wait until address was sent
|
||||
// Wait for the address to be acknowledged
|
||||
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
|
||||
while !Self::check_and_clear_error_flags()?.addr() {
|
||||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Clear condition by reading SR2
|
||||
let _ = T::regs().sr2().read();
|
||||
}
|
||||
|
||||
// Also wait until signalled we're master and everything is waiting for us
|
||||
while {
|
||||
Self::check_and_clear_error_flags()?;
|
||||
|
||||
let sr2 = T::regs().sr2().read();
|
||||
!sr2.msl() && !sr2.busy()
|
||||
} {
|
||||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Set up current address, we're trying to talk to
|
||||
T::regs().dr().write(|reg| reg.set_dr(addr << 1));
|
||||
|
||||
// Wait until address was sent
|
||||
// Wait for the address to be acknowledged
|
||||
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
|
||||
while !Self::check_and_clear_error_flags()?.addr() {
|
||||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Clear condition by reading SR2
|
||||
let _ = T::regs().sr2().read();
|
||||
|
||||
// Send bytes
|
||||
for c in bytes {
|
||||
self.send_byte(*c, timeout)?;
|
||||
}
|
||||
|
||||
if frame.send_stop() {
|
||||
// Send a STOP condition
|
||||
T::regs().cr1().modify(|reg| reg.set_stop(true));
|
||||
// Wait for STOP condition to transmit.
|
||||
while T::regs().cr1().read().stop() {
|
||||
timeout.check()?;
|
||||
}
|
||||
}
|
||||
|
||||
// Fallthrough is success
|
||||
Ok(())
|
||||
}
|
||||
@ -205,8 +279,18 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
Ok(value)
|
||||
}
|
||||
|
||||
fn blocking_read_timeout(&mut self, addr: u8, buffer: &mut [u8], timeout: Timeout) -> Result<(), Error> {
|
||||
if let Some((last, buffer)) = buffer.split_last_mut() {
|
||||
fn blocking_read_timeout(
|
||||
&mut self,
|
||||
addr: u8,
|
||||
buffer: &mut [u8],
|
||||
timeout: Timeout,
|
||||
frame: FrameOptions,
|
||||
) -> Result<(), Error> {
|
||||
let Some((last, buffer)) = buffer.split_last_mut() else {
|
||||
return Err(Error::Overrun);
|
||||
};
|
||||
|
||||
if frame.send_start() {
|
||||
// Send a START condition and set ACK bit
|
||||
T::regs().cr1().modify(|reg| {
|
||||
reg.set_start(true);
|
||||
@ -237,49 +321,45 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
|
||||
// Clear condition by reading SR2
|
||||
let _ = T::regs().sr2().read();
|
||||
}
|
||||
|
||||
// Receive bytes into buffer
|
||||
for c in buffer {
|
||||
*c = self.recv_byte(timeout)?;
|
||||
}
|
||||
// Receive bytes into buffer
|
||||
for c in buffer {
|
||||
*c = self.recv_byte(timeout)?;
|
||||
}
|
||||
|
||||
// Prepare to send NACK then STOP after next byte
|
||||
T::regs().cr1().modify(|reg| {
|
||||
// Prepare to send NACK then STOP after next byte
|
||||
T::regs().cr1().modify(|reg| {
|
||||
if frame.send_nack() {
|
||||
reg.set_ack(false);
|
||||
}
|
||||
if frame.send_stop() {
|
||||
reg.set_stop(true);
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
// Receive last byte
|
||||
*last = self.recv_byte(timeout)?;
|
||||
// Receive last byte
|
||||
*last = self.recv_byte(timeout)?;
|
||||
|
||||
if frame.send_stop() {
|
||||
// Wait for the STOP to be sent.
|
||||
while T::regs().cr1().read().stop() {
|
||||
timeout.check()?;
|
||||
}
|
||||
|
||||
// Fallthrough is success
|
||||
Ok(())
|
||||
} else {
|
||||
Err(Error::Overrun)
|
||||
}
|
||||
|
||||
// Fallthrough is success
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Blocking read.
|
||||
pub fn blocking_read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Error> {
|
||||
self.blocking_read_timeout(addr, read, self.timeout())
|
||||
self.blocking_read_timeout(addr, read, self.timeout(), FrameOptions::FirstAndLastFrame)
|
||||
}
|
||||
|
||||
/// Blocking write.
|
||||
pub fn blocking_write(&mut self, addr: u8, write: &[u8]) -> Result<(), Error> {
|
||||
let timeout = self.timeout();
|
||||
|
||||
self.write_bytes(addr, write, timeout)?;
|
||||
// Send a STOP condition
|
||||
T::regs().cr1().modify(|reg| reg.set_stop(true));
|
||||
// Wait for STOP condition to transmit.
|
||||
while T::regs().cr1().read().stop() {
|
||||
timeout.check()?;
|
||||
}
|
||||
self.write_bytes(addr, write, self.timeout(), FrameOptions::FirstAndLastFrame)?;
|
||||
|
||||
// Fallthrough is success
|
||||
Ok(())
|
||||
@ -287,10 +367,85 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
|
||||
/// Blocking write, restart, read.
|
||||
pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
|
||||
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
|
||||
// stop condition below.
|
||||
if read.is_empty() {
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
|
||||
let timeout = self.timeout();
|
||||
|
||||
self.write_bytes(addr, write, timeout)?;
|
||||
self.blocking_read_timeout(addr, read, timeout)?;
|
||||
self.write_bytes(addr, write, timeout, FrameOptions::FirstFrame)?;
|
||||
self.blocking_read_timeout(addr, read, timeout, FrameOptions::FirstAndLastFrame)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Blocking transaction with operations.
|
||||
///
|
||||
/// Consecutive operations of same type are merged. See [transaction contract] for details.
|
||||
///
|
||||
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
||||
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
|
||||
// Check empty read buffer before starting transaction. Otherwise, we would not generate the
|
||||
// stop condition below.
|
||||
if operations.iter().any(|op| match op {
|
||||
Operation::Read(read) => read.is_empty(),
|
||||
Operation::Write(_) => false,
|
||||
}) {
|
||||
return Err(Error::Overrun);
|
||||
}
|
||||
|
||||
let timeout = self.timeout();
|
||||
|
||||
let mut operations = operations.iter_mut();
|
||||
|
||||
let mut prev_op: Option<&mut Operation<'_>> = None;
|
||||
let mut next_op = operations.next();
|
||||
|
||||
while let Some(op) = next_op {
|
||||
next_op = operations.next();
|
||||
|
||||
// Check if this is the first frame of this type. This is the case for the first overall
|
||||
// frame in the transaction and whenever the type of operation changes.
|
||||
let first_frame =
|
||||
match (prev_op.as_ref(), &op) {
|
||||
(None, _) => true,
|
||||
(Some(Operation::Read(_)), Operation::Write(_))
|
||||
| (Some(Operation::Write(_)), Operation::Read(_)) => true,
|
||||
(Some(Operation::Read(_)), Operation::Read(_))
|
||||
| (Some(Operation::Write(_)), Operation::Write(_)) => false,
|
||||
};
|
||||
|
||||
let frame = match (first_frame, next_op.as_ref()) {
|
||||
// If this is the first frame of this type, we generate a (repeated) start condition
|
||||
// but have to consider the next operation: if it is the last, we generate the final
|
||||
// stop condition. Otherwise, we branch on the operation: with read operations, only
|
||||
// the last byte overall (before a write operation or the end of the transaction) is
|
||||
// to be NACK'd, i.e. if another read operation follows, we must ACK this last byte.
|
||||
(true, None) => FrameOptions::FirstAndLastFrame,
|
||||
// Make sure to keep sending ACK for last byte in read operation when it is followed
|
||||
// by another consecutive read operation. If the current operation is write, this is
|
||||
// identical to `FirstFrame`.
|
||||
(true, Some(Operation::Read(_))) => FrameOptions::FirstAndNextFrame,
|
||||
// Otherwise, send NACK for last byte (in read operation). (For write, this does not
|
||||
// matter and could also be `FirstAndNextFrame`.)
|
||||
(true, Some(Operation::Write(_))) => FrameOptions::FirstFrame,
|
||||
|
||||
// If this is not the first frame of its type, we do not generate a (repeated) start
|
||||
// condition. Otherwise, we branch the same way as above.
|
||||
(false, None) => FrameOptions::LastFrame,
|
||||
(false, Some(Operation::Read(_))) => FrameOptions::NextFrame,
|
||||
(false, Some(Operation::Write(_))) => FrameOptions::LastFrameNoStop,
|
||||
};
|
||||
|
||||
match op {
|
||||
Operation::Read(read) => self.blocking_read_timeout(addr, read, timeout, frame)?,
|
||||
Operation::Write(write) => self.write_bytes(addr, write, timeout, frame)?,
|
||||
}
|
||||
|
||||
prev_op = Some(op);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
@ -4,6 +4,7 @@ use core::task::Poll;
|
||||
|
||||
use embassy_embedded_hal::SetConfig;
|
||||
use embassy_hal_internal::drop::OnDrop;
|
||||
use embedded_hal_1::i2c::Operation;
|
||||
|
||||
use super::*;
|
||||
use crate::dma::Transfer;
|
||||
@ -579,6 +580,17 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
|
||||
// Automatic Stop
|
||||
}
|
||||
|
||||
/// Blocking transaction with operations.
|
||||
///
|
||||
/// Consecutive operations of same type are merged. See [transaction contract] for details.
|
||||
///
|
||||
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
|
||||
pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> {
|
||||
let _ = addr;
|
||||
let _ = operations;
|
||||
todo!()
|
||||
}
|
||||
|
||||
/// Blocking write multiple buffers.
|
||||
///
|
||||
/// The buffers are concatenated in a single write transaction.
|
||||
|
Loading…
Reference in New Issue
Block a user