Merge pull request #1739 from embassy-rs/refactor-fw-updater

Refactor firmware updater
This commit is contained in:
Ulf Lilleengen 2023-08-06 18:06:18 +00:00 committed by GitHub
commit 477a90b8e3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 307 additions and 255 deletions

View File

@ -10,9 +10,9 @@ use crate::{FirmwareUpdaterError, State, BOOT_MAGIC, STATE_ERASE_VALUE, SWAP_MAG
/// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
/// 'mess up' the internal bootloader state
pub struct FirmwareUpdater<DFU: NorFlash, STATE: NorFlash> {
pub struct FirmwareUpdater<'d, DFU: NorFlash, STATE: NorFlash> {
dfu: DFU,
state: STATE,
state: FirmwareState<'d, STATE>,
}
#[cfg(target_os = "none")]
@ -47,22 +47,12 @@ impl<'a, FLASH: NorFlash>
}
}
impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
impl<'d, DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<'d, DFU, STATE> {
/// Create a firmware updater instance with partition ranges for the update and state partitions.
pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>) -> Self {
pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
Self {
dfu: config.dfu,
state: config.state,
}
}
// Make sure we are running a booted firmware to avoid reverting to a bad state.
async fn verify_booted(&mut self, aligned: &mut [u8]) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
if self.get_state(aligned).await? == State::Boot {
Ok(())
} else {
Err(FirmwareUpdaterError::BadState)
state: FirmwareState::new(config.state, aligned),
}
}
@ -71,14 +61,8 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
/// This is useful to check if the bootloader has just done a swap, in order
/// to do verifications and self-tests of the new image before calling
/// `mark_booted`.
pub async fn get_state(&mut self, aligned: &mut [u8]) -> Result<State, FirmwareUpdaterError> {
self.state.read(0, aligned).await?;
if !aligned.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
pub async fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
self.state.get_state().await
}
/// Verify the DFU given a public key. If there is an error then DO NOT
@ -92,23 +76,16 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
///
/// If no signature feature is set then this method will always return a
/// signature error.
///
/// # Safety
///
/// The `_aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
#[cfg(feature = "_verify")]
pub async fn verify_and_mark_updated(
&mut self,
_public_key: &[u8],
_signature: &[u8],
_update_len: u32,
_aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(_aligned.len(), STATE::WRITE_SIZE);
assert!(_update_len <= self.dfu.capacity() as u32);
self.verify_booted(_aligned).await?;
self.state.verify_booted().await?;
#[cfg(feature = "ed25519-dalek")]
{
@ -121,8 +98,9 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?;
let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?;
let mut chunk_buf = [0; 2];
let mut message = [0; 64];
self.hash::<Sha512>(_update_len, _aligned, &mut message).await?;
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message).await?;
public_key.verify(&message, &signature).map_err(into_signature_error)?
}
@ -143,7 +121,8 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
let signature = Signature::try_from(&signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash::<Sha512>(_update_len, _aligned, &mut message).await?;
let mut chunk_buf = [0; 2];
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message).await?;
let r = public_key.verify(&message, &signature);
trace!(
@ -156,7 +135,7 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
r.map_err(into_signature_error)?
}
self.set_magic(_aligned, SWAP_MAGIC).await
self.state.mark_updated().await
}
/// Verify the update in DFU with any digest.
@ -177,49 +156,14 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
}
/// Mark to trigger firmware swap on next boot.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being written to.
#[cfg(not(feature = "_verify"))]
pub async fn mark_updated(&mut self, aligned: &mut [u8]) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.set_magic(aligned, SWAP_MAGIC).await
pub async fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
self.state.mark_updated().await
}
/// Mark firmware boot successful and stop rollback on reset.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub async fn mark_booted(&mut self, aligned: &mut [u8]) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.set_magic(aligned, BOOT_MAGIC).await
}
async fn set_magic(&mut self, aligned: &mut [u8], magic: u8) -> Result<(), FirmwareUpdaterError> {
self.state.read(0, aligned).await?;
if aligned.iter().any(|&b| b != magic) {
// Read progress validity
self.state.read(STATE::WRITE_SIZE as u32, aligned).await?;
if aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
aligned.fill(!STATE_ERASE_VALUE);
self.state.write(STATE::WRITE_SIZE as u32, aligned).await?;
}
// Clear magic and progress
self.state.erase(0, self.state.capacity() as u32).await?;
// Set magic
aligned.fill(magic);
self.state.write(0, aligned).await?;
}
Ok(())
pub async fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
self.state.mark_booted().await
}
/// Write data to a flash page.
@ -229,16 +173,10 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
/// # Safety
///
/// Failing to meet alignment and size requirements may result in a panic.
pub async fn write_firmware(
&mut self,
aligned: &mut [u8],
offset: usize,
data: &[u8],
) -> Result<(), FirmwareUpdaterError> {
pub async fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), FirmwareUpdaterError> {
assert!(data.len() >= DFU::ERASE_SIZE);
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.verify_booted(aligned).await?;
self.state.verify_booted().await?;
self.dfu.erase(offset as u32, (offset + data.len()) as u32).await?;
@ -252,20 +190,94 @@ impl<DFU: NorFlash, STATE: NorFlash> FirmwareUpdater<DFU, STATE> {
///
/// Using this instead of `write_firmware` allows for an optimized API in
/// exchange for added complexity.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub async fn prepare_update(&mut self, aligned: &mut [u8]) -> Result<&mut DFU, FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.verify_booted(aligned).await?;
pub async fn prepare_update(&mut self) -> Result<&mut DFU, FirmwareUpdaterError> {
self.state.verify_booted().await?;
self.dfu.erase(0, self.dfu.capacity() as u32).await?;
Ok(&mut self.dfu)
}
}
/// Manages the state partition of the firmware update.
///
/// Can be used standalone for more fine grained control, or as part of the updater.
pub struct FirmwareState<'d, STATE> {
state: STATE,
aligned: &'d mut [u8],
}
impl<'d, STATE: NorFlash> FirmwareState<'d, STATE> {
/// Create a firmware state instance with a buffer for magic content and state partition.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
pub fn new(state: STATE, aligned: &'d mut [u8]) -> Self {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
Self { state, aligned }
}
// Make sure we are running a booted firmware to avoid reverting to a bad state.
async fn verify_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
if self.get_state().await? == State::Boot {
Ok(())
} else {
Err(FirmwareUpdaterError::BadState)
}
}
/// Obtain the current state.
///
/// This is useful to check if the bootloader has just done a swap, in order
/// to do verifications and self-tests of the new image before calling
/// `mark_booted`.
pub async fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
self.state.read(0, &mut self.aligned).await?;
if !self.aligned.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
/// Mark to trigger firmware swap on next boot.
pub async fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
self.set_magic(SWAP_MAGIC).await
}
/// Mark firmware boot successful and stop rollback on reset.
pub async fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
self.set_magic(BOOT_MAGIC).await
}
async fn set_magic(&mut self, magic: u8) -> Result<(), FirmwareUpdaterError> {
self.state.read(0, &mut self.aligned).await?;
if self.aligned.iter().any(|&b| b != magic) {
// Read progress validity
self.state.read(STATE::WRITE_SIZE as u32, &mut self.aligned).await?;
if self.aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
self.aligned.fill(!STATE_ERASE_VALUE);
self.state.write(STATE::WRITE_SIZE as u32, &self.aligned).await?;
}
// Clear magic and progress
self.state.erase(0, self.state.capacity() as u32).await?;
// Set magic
self.aligned.fill(magic);
self.state.write(0, &self.aligned).await?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use embassy_embedded_hal::flash::partition::Partition;
@ -288,8 +300,8 @@ mod tests {
let mut to_write = [0; 4096];
to_write[..7].copy_from_slice(update.as_slice());
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state });
block_on(updater.write_firmware(&mut aligned, 0, to_write.as_slice())).unwrap();
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
block_on(updater.write_firmware(0, to_write.as_slice())).unwrap();
let mut chunk_buf = [0; 2];
let mut hash = [0; 20];
block_on(updater.hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)).unwrap();

View File

@ -10,9 +10,9 @@ use crate::{FirmwareUpdaterError, State, BOOT_MAGIC, STATE_ERASE_VALUE, SWAP_MAG
/// Blocking FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
/// 'mess up' the internal bootloader state
pub struct BlockingFirmwareUpdater<DFU: NorFlash, STATE: NorFlash> {
pub struct BlockingFirmwareUpdater<'d, DFU: NorFlash, STATE: NorFlash> {
dfu: DFU,
state: STATE,
state: BlockingFirmwareState<'d, STATE>,
}
#[cfg(target_os = "none")]
@ -49,22 +49,17 @@ impl<'a, FLASH: NorFlash>
}
}
impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
impl<'d, DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<'d, DFU, STATE> {
/// Create a firmware updater instance with partition ranges for the update and state partitions.
pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>) -> Self {
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
Self {
dfu: config.dfu,
state: config.state,
}
}
// Make sure we are running a booted firmware to avoid reverting to a bad state.
fn verify_booted(&mut self, aligned: &mut [u8]) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
if self.get_state(aligned)? == State::Boot {
Ok(())
} else {
Err(FirmwareUpdaterError::BadState)
state: BlockingFirmwareState::new(config.state, aligned),
}
}
@ -73,14 +68,8 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
/// This is useful to check if the bootloader has just done a swap, in order
/// to do verifications and self-tests of the new image before calling
/// `mark_booted`.
pub fn get_state(&mut self, aligned: &mut [u8]) -> Result<State, FirmwareUpdaterError> {
self.state.read(0, aligned)?;
if !aligned.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
pub fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
self.state.get_state()
}
/// Verify the DFU given a public key. If there is an error then DO NOT
@ -94,23 +83,16 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
///
/// If no signature feature is set then this method will always return a
/// signature error.
///
/// # Safety
///
/// The `_aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
#[cfg(feature = "_verify")]
pub fn verify_and_mark_updated(
&mut self,
_public_key: &[u8],
_signature: &[u8],
_update_len: u32,
_aligned: &mut [u8],
) -> Result<(), FirmwareUpdaterError> {
assert_eq!(_aligned.len(), STATE::WRITE_SIZE);
assert!(_update_len <= self.dfu.capacity() as u32);
self.verify_booted(_aligned)?;
self.state.verify_booted()?;
#[cfg(feature = "ed25519-dalek")]
{
@ -124,7 +106,8 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash::<Sha512>(_update_len, _aligned, &mut message)?;
let mut chunk_buf = [0; 2];
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message)?;
public_key.verify(&message, &signature).map_err(into_signature_error)?
}
@ -145,7 +128,8 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
let signature = Signature::try_from(&signature).map_err(into_signature_error)?;
let mut message = [0; 64];
self.hash::<Sha512>(_update_len, _aligned, &mut message)?;
let mut chunk_buf = [0; 2];
self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message)?;
let r = public_key.verify(&message, &signature);
trace!(
@ -158,7 +142,7 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
r.map_err(into_signature_error)?
}
self.set_magic(_aligned, SWAP_MAGIC)
self.state.mark_updated()
}
/// Verify the update in DFU with any digest.
@ -179,49 +163,14 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
}
/// Mark to trigger firmware swap on next boot.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being written to.
#[cfg(not(feature = "_verify"))]
pub fn mark_updated(&mut self, aligned: &mut [u8]) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.set_magic(aligned, SWAP_MAGIC)
pub fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
self.state.mark_updated()
}
/// Mark firmware boot successful and stop rollback on reset.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub fn mark_booted(&mut self, aligned: &mut [u8]) -> Result<(), FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.set_magic(aligned, BOOT_MAGIC)
}
fn set_magic(&mut self, aligned: &mut [u8], magic: u8) -> Result<(), FirmwareUpdaterError> {
self.state.read(0, aligned)?;
if aligned.iter().any(|&b| b != magic) {
// Read progress validity
self.state.read(STATE::WRITE_SIZE as u32, aligned)?;
if aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
aligned.fill(!STATE_ERASE_VALUE);
self.state.write(STATE::WRITE_SIZE as u32, aligned)?;
}
// Clear magic and progress
self.state.erase(0, self.state.capacity() as u32)?;
// Set magic
aligned.fill(magic);
self.state.write(0, aligned)?;
}
Ok(())
pub fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
self.state.mark_booted()
}
/// Write data to a flash page.
@ -231,15 +180,9 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
/// # Safety
///
/// Failing to meet alignment and size requirements may result in a panic.
pub fn write_firmware(
&mut self,
aligned: &mut [u8],
offset: usize,
data: &[u8],
) -> Result<(), FirmwareUpdaterError> {
pub fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), FirmwareUpdaterError> {
assert!(data.len() >= DFU::ERASE_SIZE);
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.verify_booted(aligned)?;
self.state.verify_booted()?;
self.dfu.erase(offset as u32, (offset + data.len()) as u32)?;
@ -253,19 +196,94 @@ impl<DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<DFU, STATE> {
///
/// Using this instead of `write_firmware` allows for an optimized API in
/// exchange for added complexity.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being written to.
pub fn prepare_update(&mut self, aligned: &mut [u8]) -> Result<&mut DFU, FirmwareUpdaterError> {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
self.verify_booted(aligned)?;
pub fn prepare_update(&mut self) -> Result<&mut DFU, FirmwareUpdaterError> {
self.state.verify_booted()?;
self.dfu.erase(0, self.dfu.capacity() as u32)?;
Ok(&mut self.dfu)
}
}
/// Manages the state partition of the firmware update.
///
/// Can be used standalone for more fine grained control, or as part of the updater.
pub struct BlockingFirmwareState<'d, STATE> {
state: STATE,
aligned: &'d mut [u8],
}
impl<'d, STATE: NorFlash> BlockingFirmwareState<'d, STATE> {
/// Create a firmware state instance with a buffer for magic content and state partition.
///
/// # Safety
///
/// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
/// and written to.
pub fn new(state: STATE, aligned: &'d mut [u8]) -> Self {
assert_eq!(aligned.len(), STATE::WRITE_SIZE);
Self { state, aligned }
}
// Make sure we are running a booted firmware to avoid reverting to a bad state.
fn verify_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
if self.get_state()? == State::Boot {
Ok(())
} else {
Err(FirmwareUpdaterError::BadState)
}
}
/// Obtain the current state.
///
/// This is useful to check if the bootloader has just done a swap, in order
/// to do verifications and self-tests of the new image before calling
/// `mark_booted`.
pub fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
self.state.read(0, &mut self.aligned)?;
if !self.aligned.iter().any(|&b| b != SWAP_MAGIC) {
Ok(State::Swap)
} else {
Ok(State::Boot)
}
}
/// Mark to trigger firmware swap on next boot.
pub fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
self.set_magic(SWAP_MAGIC)
}
/// Mark firmware boot successful and stop rollback on reset.
pub fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
self.set_magic(BOOT_MAGIC)
}
fn set_magic(&mut self, magic: u8) -> Result<(), FirmwareUpdaterError> {
self.state.read(0, &mut self.aligned)?;
if self.aligned.iter().any(|&b| b != magic) {
// Read progress validity
self.state.read(STATE::WRITE_SIZE as u32, &mut self.aligned)?;
if self.aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
// The current progress validity marker is invalid
} else {
// Invalidate progress
self.aligned.fill(!STATE_ERASE_VALUE);
self.state.write(STATE::WRITE_SIZE as u32, &self.aligned)?;
}
// Clear magic and progress
self.state.erase(0, self.state.capacity() as u32)?;
// Set magic
self.aligned.fill(magic);
self.state.write(0, &self.aligned)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use core::cell::RefCell;
@ -283,14 +301,14 @@ mod tests {
let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 4096, 8>::default()));
let state = BlockingPartition::new(&flash, 0, 4096);
let dfu = BlockingPartition::new(&flash, 65536, 65536);
let mut aligned = [0; 8];
let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
let mut to_write = [0; 4096];
to_write[..7].copy_from_slice(update.as_slice());
let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state });
let mut aligned = [0; 8];
updater.write_firmware(&mut aligned, 0, to_write.as_slice()).unwrap();
let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
updater.write_firmware(0, to_write.as_slice()).unwrap();
let mut chunk_buf = [0; 2];
let mut hash = [0; 20];
updater

View File

@ -3,8 +3,8 @@ mod asynch;
mod blocking;
#[cfg(feature = "nightly")]
pub use asynch::FirmwareUpdater;
pub use blocking::BlockingFirmwareUpdater;
pub use asynch::{FirmwareState, FirmwareUpdater};
pub use blocking::{BlockingFirmwareState, BlockingFirmwareUpdater};
use embedded_storage::nor_flash::{NorFlashError, NorFlashErrorKind};
/// Firmware updater flash configuration holding the two flashes used by the updater

View File

@ -16,9 +16,11 @@ mod test_flash;
// TODO: Use the value provided by NorFlash when available
pub(crate) const STATE_ERASE_VALUE: u8 = 0xFF;
pub use boot_loader::{BootError, BootLoader, BootLoaderConfig};
pub use firmware_updater::{
BlockingFirmwareState, BlockingFirmwareUpdater, FirmwareUpdaterConfig, FirmwareUpdaterError,
};
#[cfg(feature = "nightly")]
pub use firmware_updater::FirmwareUpdater;
pub use firmware_updater::{BlockingFirmwareUpdater, FirmwareUpdaterConfig, FirmwareUpdaterError};
pub use firmware_updater::{FirmwareState, FirmwareUpdater};
pub(crate) const BOOT_MAGIC: u8 = 0xD0;
pub(crate) const SWAP_MAGIC: u8 = 0xF0;
@ -118,15 +120,18 @@ mod tests {
block_on(flash.active().erase(0, ORIGINAL.len() as u32)).unwrap();
block_on(flash.active().write(0, &ORIGINAL)).unwrap();
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig {
let mut updater = FirmwareUpdater::new(
FirmwareUpdaterConfig {
dfu: flash.dfu(),
state: flash.state(),
});
block_on(updater.write_firmware(&mut aligned, 0, &UPDATE)).unwrap();
block_on(updater.mark_updated(&mut aligned)).unwrap();
},
&mut aligned,
);
block_on(updater.write_firmware(0, &UPDATE)).unwrap();
block_on(updater.mark_updated()).unwrap();
// Writing after marking updated is not allowed until marked as booted.
let res: Result<(), FirmwareUpdaterError> = block_on(updater.write_firmware(&mut aligned, 0, &UPDATE));
let res: Result<(), FirmwareUpdaterError> = block_on(updater.write_firmware(0, &UPDATE));
assert!(matches!(res, Err::<(), _>(FirmwareUpdaterError::BadState)));
let flash = flash.into_blocking();
@ -158,11 +163,14 @@ mod tests {
// Mark as booted
let flash = flash.into_async();
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig {
let mut updater = FirmwareUpdater::new(
FirmwareUpdaterConfig {
dfu: flash.dfu(),
state: flash.state(),
});
block_on(updater.mark_booted(&mut aligned)).unwrap();
},
&mut aligned,
);
block_on(updater.mark_booted()).unwrap();
let flash = flash.into_blocking();
let mut bootloader = BootLoader::new(BootLoaderConfig {
@ -190,12 +198,15 @@ mod tests {
block_on(flash.active().erase(0, ORIGINAL.len() as u32)).unwrap();
block_on(flash.active().write(0, &ORIGINAL)).unwrap();
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig {
let mut updater = FirmwareUpdater::new(
FirmwareUpdaterConfig {
dfu: flash.dfu(),
state: flash.state(),
});
block_on(updater.write_firmware(&mut aligned, 0, &UPDATE)).unwrap();
block_on(updater.mark_updated(&mut aligned)).unwrap();
},
&mut aligned,
);
block_on(updater.write_firmware(0, &UPDATE)).unwrap();
block_on(updater.mark_updated()).unwrap();
let flash = flash.into_blocking();
let mut bootloader = BootLoader::new(BootLoaderConfig {
@ -232,12 +243,15 @@ mod tests {
block_on(flash.active().erase(0, ORIGINAL.len() as u32)).unwrap();
block_on(flash.active().write(0, &ORIGINAL)).unwrap();
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig {
let mut updater = FirmwareUpdater::new(
FirmwareUpdaterConfig {
dfu: flash.dfu(),
state: flash.state(),
});
block_on(updater.write_firmware(&mut aligned, 0, &UPDATE)).unwrap();
block_on(updater.mark_updated(&mut aligned)).unwrap();
},
&mut aligned,
);
block_on(updater.write_firmware(0, &UPDATE)).unwrap();
block_on(updater.mark_updated()).unwrap();
let flash = flash.into_blocking();
let mut bootloader = BootLoader::new(BootLoaderConfig {
@ -293,18 +307,19 @@ mod tests {
// On with the test
let flash = flash.into_async();
let mut updater = FirmwareUpdater::new(FirmwareUpdaterConfig {
let mut aligned = [0; 4];
let mut updater = FirmwareUpdater::new(
FirmwareUpdaterConfig {
dfu: flash.dfu(),
state: flash.state(),
});
let mut aligned = [0; 4];
},
&mut aligned,
);
assert!(block_on(updater.verify_and_mark_updated(
&public_key.to_bytes(),
&signature.to_bytes(),
firmware_len as u32,
&mut aligned,
))
.is_ok());
}

View File

@ -3,9 +3,11 @@
#![doc = include_str!("../README.md")]
mod fmt;
pub use embassy_boot::{
AlignedBuffer, BlockingFirmwareState, BlockingFirmwareUpdater, BootLoaderConfig, FirmwareUpdaterConfig,
};
#[cfg(feature = "nightly")]
pub use embassy_boot::FirmwareUpdater;
pub use embassy_boot::{AlignedBuffer, BlockingFirmwareUpdater, BootLoaderConfig, FirmwareUpdaterConfig};
pub use embassy_boot::{FirmwareState, FirmwareUpdater};
use embassy_nrf::nvmc::PAGE_SIZE;
use embassy_nrf::peripherals::WDT;
use embassy_nrf::wdt;

View File

@ -3,9 +3,11 @@
#![doc = include_str!("../README.md")]
mod fmt;
pub use embassy_boot::{
AlignedBuffer, BlockingFirmwareState, BlockingFirmwareUpdater, BootLoaderConfig, FirmwareUpdaterConfig, State,
};
#[cfg(feature = "nightly")]
pub use embassy_boot::FirmwareUpdater;
pub use embassy_boot::{AlignedBuffer, BlockingFirmwareUpdater, BootLoaderConfig, FirmwareUpdaterConfig, State};
pub use embassy_boot::{FirmwareState, FirmwareUpdater};
use embassy_rp::flash::{Blocking, Flash, ERASE_SIZE};
use embassy_rp::peripherals::{FLASH, WATCHDOG};
use embassy_rp::watchdog::Watchdog;

View File

@ -3,9 +3,11 @@
#![doc = include_str!("../README.md")]
mod fmt;
pub use embassy_boot::{
AlignedBuffer, BlockingFirmwareState, BlockingFirmwareUpdater, BootLoaderConfig, FirmwareUpdaterConfig, State,
};
#[cfg(feature = "nightly")]
pub use embassy_boot::FirmwareUpdater;
pub use embassy_boot::{AlignedBuffer, BlockingFirmwareUpdater, BootLoaderConfig, FirmwareUpdaterConfig, State};
pub use embassy_boot::{FirmwareState, FirmwareUpdater};
use embedded_storage::nor_flash::NorFlash;
/// A bootloader for STM32 devices.

View File

@ -52,20 +52,20 @@ async fn main(_spawner: Spawner) {
let nvmc = Mutex::new(BlockingAsync::new(nvmc));
let config = FirmwareUpdaterConfig::from_linkerfile(&nvmc);
let mut updater = FirmwareUpdater::new(config);
let mut magic = [0; 4];
let mut updater = FirmwareUpdater::new(config, &mut magic);
loop {
led.set_low();
button.wait_for_any_edge().await;
if button.is_low() {
let mut offset = 0;
let mut magic = [0; 4];
for chunk in APP_B.chunks(4096) {
let mut buf: [u8; 4096] = [0; 4096];
buf[..chunk.len()].copy_from_slice(chunk);
updater.write_firmware(&mut magic, offset, &buf).await.unwrap();
updater.write_firmware(offset, &buf).await.unwrap();
offset += chunk.len();
}
updater.mark_updated(&mut magic).await.unwrap();
updater.mark_updated().await.unwrap();
led.set_high();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -38,7 +38,8 @@ async fn main(_s: Spawner) {
let flash = Mutex::new(RefCell::new(flash));
let config = FirmwareUpdaterConfig::from_linkerfile_blocking(&flash);
let mut updater = BlockingFirmwareUpdater::new(config);
let mut aligned = AlignedBuffer([0; 4]);
let mut updater = BlockingFirmwareUpdater::new(config, &mut aligned.0);
Timer::after(Duration::from_secs(5)).await;
watchdog.feed();
@ -47,7 +48,7 @@ async fn main(_s: Spawner) {
let mut buf: AlignedBuffer<4096> = AlignedBuffer([0; 4096]);
defmt::info!("preparing update");
let writer = updater
.prepare_update(&mut buf.0[..1])
.prepare_update()
.map_err(|e| defmt::warn!("E: {:?}", defmt::Debug2Format(&e)))
.unwrap();
defmt::info!("writer created, starting write");
@ -59,7 +60,7 @@ async fn main(_s: Spawner) {
}
watchdog.feed();
defmt::info!("firmware written, marking update");
updater.mark_updated(&mut buf.0[..1]).unwrap();
updater.mark_updated().unwrap();
Timer::after(Duration::from_secs(2)).await;
led.set_low();
defmt::info!("update marked, resetting");

View File

@ -31,17 +31,17 @@ async fn main(_spawner: Spawner) {
led.set_high();
let config = FirmwareUpdaterConfig::from_linkerfile(&flash);
let mut updater = FirmwareUpdater::new(config);
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut updater = FirmwareUpdater::new(config, &mut magic.0);
button.wait_for_falling_edge().await;
let mut offset = 0;
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
for chunk in APP_B.chunks(2048) {
let mut buf: [u8; 2048] = [0; 2048];
buf[..chunk.len()].copy_from_slice(chunk);
updater.write_firmware(magic.as_mut(), offset, &buf).await.unwrap();
updater.write_firmware(offset, &buf).await.unwrap();
offset += chunk.len();
}
updater.mark_updated(magic.as_mut()).await.unwrap();
updater.mark_updated().await.unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -33,9 +33,9 @@ async fn main(_spawner: Spawner) {
led.set_high();
let config = FirmwareUpdaterConfig::from_linkerfile_blocking(&flash);
let mut updater = BlockingFirmwareUpdater::new(config);
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let writer = updater.prepare_update(magic.as_mut()).unwrap();
let mut updater = BlockingFirmwareUpdater::new(config, &mut magic.0);
let writer = updater.prepare_update().unwrap();
button.wait_for_rising_edge().await;
let mut offset = 0;
let mut buf = AlignedBuffer([0; 4096]);
@ -44,7 +44,7 @@ async fn main(_spawner: Spawner) {
writer.write(offset, buf.as_ref()).unwrap();
offset += chunk.len() as u32;
}
updater.mark_updated(magic.as_mut()).unwrap();
updater.mark_updated().unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -34,8 +34,8 @@ async fn main(_spawner: Spawner) {
let config = FirmwareUpdaterConfig::from_linkerfile_blocking(&flash);
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut updater = BlockingFirmwareUpdater::new(config);
let writer = updater.prepare_update(magic.as_mut()).unwrap();
let mut updater = BlockingFirmwareUpdater::new(config, &mut magic.0);
let writer = updater.prepare_update().unwrap();
button.wait_for_rising_edge().await;
let mut offset = 0;
let mut buf = AlignedBuffer([0; 4096]);
@ -44,7 +44,7 @@ async fn main(_spawner: Spawner) {
writer.write(offset, buf.as_ref()).unwrap();
offset += chunk.len() as u32;
}
updater.mark_updated(magic.as_mut()).unwrap();
updater.mark_updated().unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -33,18 +33,18 @@ async fn main(_spawner: Spawner) {
led.set_high();
let config = FirmwareUpdaterConfig::from_linkerfile(&flash);
let mut updater = FirmwareUpdater::new(config);
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut updater = FirmwareUpdater::new(config, &mut magic.0);
button.wait_for_falling_edge().await;
let mut offset = 0;
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
for chunk in APP_B.chunks(128) {
let mut buf: [u8; 128] = [0; 128];
buf[..chunk.len()].copy_from_slice(chunk);
updater.write_firmware(magic.as_mut(), offset, &buf).await.unwrap();
updater.write_firmware(offset, &buf).await.unwrap();
offset += chunk.len();
}
updater.mark_updated(magic.as_mut()).await.unwrap();
updater.mark_updated().await.unwrap();
led.set_low();
Timer::after(Duration::from_secs(1)).await;
cortex_m::peripheral::SCB::sys_reset();

View File

@ -33,18 +33,18 @@ async fn main(_spawner: Spawner) {
led.set_high();
let config = FirmwareUpdaterConfig::from_linkerfile(&flash);
let mut updater = FirmwareUpdater::new(config);
button.wait_for_falling_edge().await;
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut updater = FirmwareUpdater::new(config, &mut magic.0);
button.wait_for_falling_edge().await;
let mut offset = 0;
for chunk in APP_B.chunks(128) {
let mut buf: [u8; 128] = [0; 128];
buf[..chunk.len()].copy_from_slice(chunk);
updater.write_firmware(magic.as_mut(), offset, &buf).await.unwrap();
updater.write_firmware(offset, &buf).await.unwrap();
offset += chunk.len();
}
updater.mark_updated(magic.as_mut()).await.unwrap();
updater.mark_updated().await.unwrap();
led.set_low();
Timer::after(Duration::from_secs(1)).await;
cortex_m::peripheral::SCB::sys_reset();

View File

@ -31,17 +31,17 @@ async fn main(_spawner: Spawner) {
led.set_high();
let config = FirmwareUpdaterConfig::from_linkerfile(&flash);
let mut updater = FirmwareUpdater::new(config);
button.wait_for_falling_edge().await;
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut updater = FirmwareUpdater::new(config, &mut magic.0);
button.wait_for_falling_edge().await;
let mut offset = 0;
for chunk in APP_B.chunks(2048) {
let mut buf: [u8; 2048] = [0; 2048];
buf[..chunk.len()].copy_from_slice(chunk);
updater.write_firmware(magic.as_mut(), offset, &buf).await.unwrap();
updater.write_firmware(offset, &buf).await.unwrap();
offset += chunk.len();
}
updater.mark_updated(magic.as_mut()).await.unwrap();
updater.mark_updated().await.unwrap();
led.set_low();
cortex_m::peripheral::SCB::sys_reset();
}

View File

@ -31,19 +31,19 @@ async fn main(_spawner: Spawner) {
led.set_high();
let config = FirmwareUpdaterConfig::from_linkerfile(&flash);
let mut updater = FirmwareUpdater::new(config);
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut updater = FirmwareUpdater::new(config, &mut magic.0);
button.wait_for_falling_edge().await;
//defmt::info!("Starting update");
let mut magic = AlignedBuffer([0; WRITE_SIZE]);
let mut offset = 0;
for chunk in APP_B.chunks(2048) {
let mut buf: [u8; 2048] = [0; 2048];
buf[..chunk.len()].copy_from_slice(chunk);
// defmt::info!("Writing chunk at 0x{:x}", offset);
updater.write_firmware(magic.as_mut(), offset, &buf).await.unwrap();
updater.write_firmware(offset, &buf).await.unwrap();
offset += chunk.len();
}
updater.mark_updated(magic.as_mut()).await.unwrap();
updater.mark_updated().await.unwrap();
//defmt::info!("Marked as updated");
led.set_low();
cortex_m::peripheral::SCB::sys_reset();