BXCAN: Register access into new Registers struct.

This commit is contained in:
Corey Schuhen 2024-03-24 07:20:33 +10:00
parent 32065d7719
commit 3bdaad39e8
4 changed files with 465 additions and 380 deletions

View File

@ -43,7 +43,35 @@ pub type Data = crate::can::frame::ClassicData;
/// CAN Frame
pub type Frame = crate::can::frame::ClassicFrame;
use crate::can::_version::Envelope;
use crate::can::bx::filter::MasterFilters;
use crate::can::enums::BusError;
use crate::pac::can::vals::Lec;
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(crate) enum RxFifo {
Fifo0,
Fifo1,
}
trait IntoBusError {
fn into_bus_err(self) -> Option<BusError>;
}
impl IntoBusError for Lec {
fn into_bus_err(self) -> Option<BusError> {
match self {
Lec::STUFF => Some(BusError::Stuff),
Lec::FORM => Some(BusError::Form),
Lec::ACK => Some(BusError::Acknowledge),
Lec::BITRECESSIVE => Some(BusError::BitRecessive),
Lec::BITDOMINANT => Some(BusError::BitDominant),
Lec::CRC => Some(BusError::Crc),
Lec::CUSTOM => Some(BusError::Software),
_ => None,
}
}
}
/// A bxCAN peripheral instance.
///
@ -233,229 +261,36 @@ impl PartialOrd for IdReg {
}
}
/// Configuration proxy returned by [`Can::modify_config`].
#[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"]
pub struct CanConfig<'a, I: Instance> {
can: &'a mut Can<I>,
pub(crate) struct Registers {
pub canregs: crate::pac::can::Can,
}
impl<I: Instance> CanConfig<'_, I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(self, bt: crate::can::util::NominalBitTiming) -> Self {
self.can.set_bit_timing(bt);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
self.can.canregs.btr().modify(|reg| reg.set_lbkm(enabled));
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
let mode = match enabled {
false => stm32_metapac::can::vals::Silm::NORMAL,
true => stm32_metapac::can::vals::Silm::SILENT,
};
self.can.canregs.btr().modify(|reg| reg.set_silm(mode));
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
self.can.canregs.mcr().modify(|reg| reg.set_nart(enabled));
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead.
pub fn enable(mut self) {
self.leave_init_mode();
match nb::block!(self.can.enable_non_blocking()) {
Ok(()) => {}
Err(void) => match void {},
}
// Don't run the destructor.
mem::forget(self);
}
/// Leaves initialization mode, but keeps the peripheral in sleep mode.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) {
self.leave_init_mode();
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
self.can.canregs.mcr().modify(|reg| {
reg.set_sleep(true);
reg.set_inrq(false);
});
loop {
let msr = self.can.canregs.msr().read();
if msr.slak() && !msr.inak() {
break;
}
}
}
}
impl<I: Instance> Drop for CanConfig<'_, I> {
#[inline]
fn drop(&mut self) {
self.leave_init_mode();
}
}
/// Builder returned by [`Can::builder`].
#[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"]
pub struct CanBuilder<I: Instance> {
can: Can<I>,
}
impl<I: Instance> CanBuilder<I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(mut self, bt: crate::can::util::NominalBitTiming) -> Self {
self.can.set_bit_timing(bt);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
self.can.canregs.btr().modify(|reg| reg.set_lbkm(enabled));
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
let mode = match enabled {
false => stm32_metapac::can::vals::Silm::NORMAL,
true => stm32_metapac::can::vals::Silm::SILENT,
};
self.can.canregs.btr().modify(|reg| reg.set_silm(mode));
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
self.can.canregs.mcr().modify(|reg| reg.set_nart(enabled));
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanBuilder::leave_disabled`] instead.
pub fn enable(mut self) -> Can<I> {
self.leave_init_mode();
match nb::block!(self.can.enable_non_blocking()) {
Ok(()) => self.can,
Err(void) => match void {},
}
}
/// Returns the [`Can`] interface without enabling it.
///
/// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling
/// it.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) -> Can<I> {
self.leave_init_mode();
self.can
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
self.can.canregs.mcr().modify(|reg| {
reg.set_sleep(true);
reg.set_inrq(false);
});
loop {
let msr = self.can.canregs.msr().read();
if msr.slak() && !msr.inak() {
break;
}
}
}
}
/// Interface to a bxCAN peripheral.
pub struct Can<I: Instance> {
instance: I,
canregs: crate::pac::can::Can,
}
impl<I> Can<I>
where
I: Instance,
{
/// Creates a [`CanBuilder`] for constructing a CAN interface.
pub fn builder(instance: I, canregs: crate::pac::can::Can) -> CanBuilder<I> {
let can_builder = CanBuilder {
can: Can { instance, canregs },
};
canregs.mcr().modify(|reg| {
impl Registers {
fn enter_init_mode(&mut self) {
self.canregs.mcr().modify(|reg| {
reg.set_sleep(false);
reg.set_inrq(true);
});
loop {
let msr = canregs.msr().read();
let msr = self.canregs.msr().read();
if !msr.slak() && msr.inak() {
break;
}
}
}
can_builder
// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
self.canregs.mcr().modify(|reg| {
reg.set_sleep(true);
reg.set_inrq(false);
});
loop {
let msr = self.canregs.msr().read();
if msr.slak() && !msr.inak() {
break;
}
}
}
fn set_bit_timing(&mut self, bt: crate::can::util::NominalBitTiming) {
@ -471,38 +306,29 @@ where
});
}
/// Returns a reference to the peripheral instance.
///
/// This allows accessing HAL-specific data stored in the instance type.
pub fn instance(&mut self) -> &mut I {
&mut self.instance
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(&self, enabled: bool) {
let mode = match enabled {
false => stm32_metapac::can::vals::Silm::NORMAL,
true => stm32_metapac::can::vals::Silm::SILENT,
};
self.canregs.btr().modify(|reg| reg.set_silm(mode));
}
/// Disables the CAN interface and returns back the raw peripheral it was created from.
/// Enables or disables automatic retransmission of messages.
///
/// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
/// enter sleep mode.
pub fn free(self) -> I {
self.canregs.mcr().write(|reg| reg.set_reset(true));
self.instance
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(&self, enabled: bool) {
self.canregs.mcr().modify(|reg| reg.set_nart(enabled));
}
/// Configure bit timings and silent/loop-back mode.
///
/// Calling this method will enter initialization mode.
pub fn modify_config(&mut self) -> CanConfig<'_, I> {
self.canregs.mcr().modify(|reg| {
reg.set_sleep(false);
reg.set_inrq(true);
});
loop {
let msr = self.canregs.msr().read();
if !msr.slak() && msr.inak() {
break;
}
}
CanConfig { can: self }
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(&self, enabled: bool) {
self.canregs.btr().modify(|reg| reg.set_lbkm(enabled));
}
/// Configures the automatic wake-up feature.
@ -512,6 +338,7 @@ where
/// When turned on, an incoming frame will cause the peripheral to wake up from sleep and
/// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming
/// frame.
#[allow(dead_code)]
pub fn set_automatic_wakeup(&mut self, enabled: bool) {
self.canregs.mcr().modify(|reg| reg.set_awum(enabled));
}
@ -540,6 +367,7 @@ where
/// Puts the peripheral in a sleep mode to save power.
///
/// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled.
#[allow(dead_code)]
pub fn sleep(&mut self) {
self.canregs.mcr().modify(|reg| {
reg.set_sleep(true);
@ -553,10 +381,19 @@ where
}
}
/// Disables the CAN interface.
///
/// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
/// enter sleep mode.
pub fn reset(&self) {
self.canregs.mcr().write(|reg| reg.set_reset(true));
}
/// Wakes up from sleep mode.
///
/// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN
/// frame will cause that interrupt.
#[allow(dead_code)]
pub fn wakeup(&mut self) {
self.canregs.mcr().modify(|reg| {
reg.set_sleep(false);
@ -570,73 +407,18 @@ where
}
}
/// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure(self.canregs).transmit(frame) }
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_transmitter_idle(&self) -> bool {
// Safety: Read-only operation.
unsafe { Tx::<I>::conjure(self.canregs).is_idle() }
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure(self.canregs).abort(mailbox) }
}
pub(crate) fn split_by_ref(&mut self) -> (Tx<I>, Rx<I>) {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
let tx = unsafe { Tx::conjure(self.canregs) };
let rx0 = unsafe { Rx::conjure() };
(tx, rx0)
}
}
impl<I: FilterOwner> Can<I> {
/// Accesses the filter banks owned by this CAN peripheral.
///
/// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
/// peripheral instead.
pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
unsafe { MasterFilters::new(self.canregs) }
}
}
/// Marker for Tx half
pub struct Tx<I> {
_can: PhantomData<I>,
canregs: crate::pac::can::Can,
}
impl<I> Tx<I>
where
I: Instance,
{
unsafe fn conjure(canregs: crate::pac::can::Can) -> Self {
Self {
_can: PhantomData,
canregs,
pub fn curr_error(&self) -> Option<BusError> {
let err = { self.canregs.esr().read() };
if err.boff() {
return Some(BusError::BusOff);
} else if err.epvf() {
return Some(BusError::BusPassive);
} else if err.ewgf() {
return Some(BusError::BusWarning);
} else if let Some(err) = err.lec().into_bus_err() {
return Some(err);
}
None
}
/// Puts a CAN frame in a transmit mailbox for transmission on the bus.
@ -802,6 +584,361 @@ where
reg.set_rqcp(2, true);
});
}
pub fn receive_fifo(&self, fifo: crate::can::_version::bx::RxFifo) -> Option<Envelope> {
// Generate timestamp as early as possible
#[cfg(feature = "time")]
let ts = embassy_time::Instant::now();
use crate::pac::can::vals::Ide;
let fifo_idx = match fifo {
crate::can::_version::bx::RxFifo::Fifo0 => 0usize,
crate::can::_version::bx::RxFifo::Fifo1 => 1usize,
};
let rfr = self.canregs.rfr(fifo_idx);
let fifo = self.canregs.rx(fifo_idx);
// If there are no pending messages, there is nothing to do
if rfr.read().fmp() == 0 {
return None;
}
let rir = fifo.rir().read();
let id: embedded_can::Id = if rir.ide() == Ide::STANDARD {
embedded_can::StandardId::new(rir.stid()).unwrap().into()
} else {
let stid = (rir.stid() & 0x7FF) as u32;
let exid = rir.exid() & 0x3FFFF;
let id = (stid << 18) | (exid);
embedded_can::ExtendedId::new(id).unwrap().into()
};
let data_len = fifo.rdtr().read().dlc();
let mut data: [u8; 8] = [0; 8];
data[0..4].copy_from_slice(&fifo.rdlr().read().0.to_ne_bytes());
data[4..8].copy_from_slice(&fifo.rdhr().read().0.to_ne_bytes());
let frame = Frame::new(Header::new(id, data_len, false), &data).unwrap();
let envelope = Envelope {
#[cfg(feature = "time")]
ts,
frame,
};
rfr.modify(|v| v.set_rfom(true));
Some(envelope)
}
}
/// Configuration proxy returned by [`Can::modify_config`].
#[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"]
pub struct CanConfig<'a, I: Instance> {
can: &'a mut Can<I>,
}
impl<I: Instance> CanConfig<'_, I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(self, bt: crate::can::util::NominalBitTiming) -> Self {
self.can.registers.set_bit_timing(bt);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
self.can.registers.set_loopback(enabled);
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
self.can.registers.set_silent(enabled);
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
self.can.registers.set_automatic_retransmit(enabled);
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead.
pub fn enable(self) {
self.can.registers.leave_init_mode();
match nb::block!(self.can.registers.enable_non_blocking()) {
Ok(()) => {}
Err(void) => match void {},
}
// Don't run the destructor.
mem::forget(self);
}
/// Leaves initialization mode, but keeps the peripheral in sleep mode.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(self) {
self.can.registers.leave_init_mode();
}
}
impl<I: Instance> Drop for CanConfig<'_, I> {
#[inline]
fn drop(&mut self) {
self.can.registers.leave_init_mode();
}
}
/// Builder returned by [`Can::builder`].
#[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"]
pub struct CanBuilder<I: Instance> {
can: Can<I>,
}
impl<I: Instance> CanBuilder<I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(mut self, bt: crate::can::util::NominalBitTiming) -> Self {
self.can.registers.set_bit_timing(bt);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
self.can.registers.set_loopback(enabled);
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
self.can.registers.set_silent(enabled);
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
self.can.registers.set_automatic_retransmit(enabled);
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanBuilder::leave_disabled`] instead.
pub fn enable(mut self) -> Can<I> {
self.leave_init_mode();
match nb::block!(self.can.registers.enable_non_blocking()) {
Ok(()) => self.can,
Err(void) => match void {},
}
}
/// Returns the [`Can`] interface without enabling it.
///
/// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling
/// it.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) -> Can<I> {
self.leave_init_mode();
self.can
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
self.can.registers.leave_init_mode();
}
}
/// Interface to a bxCAN peripheral.
pub struct Can<I: Instance> {
instance: I,
canregs: crate::pac::can::Can,
pub(crate) registers: Registers,
}
impl<I> Can<I>
where
I: Instance,
{
/// Creates a [`CanBuilder`] for constructing a CAN interface.
pub fn builder(instance: I, canregs: crate::pac::can::Can) -> CanBuilder<I> {
let mut can_builder = CanBuilder {
can: Can {
instance,
canregs,
registers: Registers { canregs },
},
};
can_builder.can.registers.enter_init_mode();
can_builder
}
/// Disables the CAN interface and returns back the raw peripheral it was created from.
///
/// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
/// enter sleep mode.
pub fn free(self) -> I {
self.registers.reset();
self.instance
}
/// Configure bit timings and silent/loop-back mode.
///
/// Calling this method will enter initialization mode.
pub fn modify_config(&mut self) -> CanConfig<'_, I> {
self.registers.enter_init_mode();
CanConfig { can: self }
}
/// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure(self.canregs).transmit(frame) }
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_transmitter_idle(&self) -> bool {
// Safety: Read-only operation.
unsafe { Tx::<I>::conjure(self.canregs).is_idle() }
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure(self.canregs).abort(mailbox) }
}
pub(crate) fn split_by_ref(&mut self) -> (Tx<I>, Rx<I>) {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
let tx = unsafe { Tx::conjure(self.canregs) };
let rx0 = unsafe { Rx::conjure() };
(tx, rx0)
}
}
impl<I: FilterOwner> Can<I> {
/// Accesses the filter banks owned by this CAN peripheral.
///
/// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
/// peripheral instead.
pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
unsafe { MasterFilters::new(self.canregs) }
}
}
/// Marker for Tx half
pub struct Tx<I> {
_can: PhantomData<I>,
pub(crate) registers: Registers,
}
impl<I> Tx<I>
where
I: Instance,
{
unsafe fn conjure(canregs: crate::pac::can::Can) -> Self {
Self {
_can: PhantomData,
registers: Registers { canregs }, //canregs,
}
}
/// Puts a CAN frame in a transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
self.registers.transmit(frame)
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
self.registers.abort(mailbox)
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_idle(&self) -> bool {
self.registers.is_idle()
}
/// Clears the request complete flag for all mailboxes.
pub fn clear_interrupt_flags(&mut self) {
self.registers.clear_interrupt_flags()
}
}
/// Marker for Rx half
@ -814,9 +951,7 @@ where
I: Instance,
{
unsafe fn conjure() -> Self {
Self {
_can: PhantomData,
}
Self { _can: PhantomData }
}
}

View File

@ -14,7 +14,6 @@ use futures::FutureExt;
use crate::gpio::AFType;
use crate::interrupt::typelevel::Interrupt;
use crate::pac::can::vals::{Ide, Lec};
use crate::rcc::RccPeripheral;
use crate::{interrupt, peripherals, Peripheral};
@ -185,7 +184,7 @@ impl<'d, T: Instance> Can<'d, T> {
/// This will wait for 11 consecutive recessive bits (bus idle state).
/// Contrary to enable method from bxcan library, this will not freeze the executor while waiting.
pub async fn enable(&mut self) {
while self.enable_non_blocking().is_err() {
while self.registers.enable_non_blocking().is_err() {
// SCE interrupt is only generated for entering sleep mode, but not leaving.
// Yield to allow other tasks to execute while can bus is initializing.
embassy_futures::yield_now().await;
@ -243,52 +242,17 @@ impl<'d, T: Instance> Can<'d, T> {
}
unsafe fn receive_fifo(fifo: RxFifo) {
// Generate timestamp as early as possible
#[cfg(feature = "time")]
let ts = embassy_time::Instant::now();
let state = T::state();
let regs = T::regs();
let fifo_idx = match fifo {
RxFifo::Fifo0 => 0usize,
RxFifo::Fifo1 => 1usize,
};
let rfr = regs.rfr(fifo_idx);
let fifo = regs.rx(fifo_idx);
let regsisters = crate::can::bx::Registers { canregs: T::regs() };
loop {
// If there are no pending messages, there is nothing to do
if rfr.read().fmp() == 0 {
return;
}
let rir = fifo.rir().read();
let id: embedded_can::Id = if rir.ide() == Ide::STANDARD {
embedded_can::StandardId::new(rir.stid()).unwrap().into()
} else {
let stid = (rir.stid() & 0x7FF) as u32;
let exid = rir.exid() & 0x3FFFF;
let id = (stid << 18) | (exid);
embedded_can::ExtendedId::new(id).unwrap().into()
match regsisters.receive_fifo(fifo) {
Some(envelope) => {
// NOTE: consensus was reached that if rx_queue is full, packets should be dropped
let _ = state.rx_queue.try_send(envelope);
}
None => return,
};
let data_len = fifo.rdtr().read().dlc();
let mut data: [u8; 8] = [0; 8];
data[0..4].copy_from_slice(&fifo.rdlr().read().0.to_ne_bytes());
data[4..8].copy_from_slice(&fifo.rdhr().read().0.to_ne_bytes());
let frame = Frame::new(Header::new(id, data_len, false), &data).unwrap();
let envelope = Envelope {
#[cfg(feature = "time")]
ts,
frame,
};
rfr.modify(|v| v.set_rfom(true));
/*
NOTE: consensus was reached that if rx_queue is full, packets should be dropped
*/
let _ = state.rx_queue.try_send(envelope);
}
}
@ -297,7 +261,7 @@ impl<'d, T: Instance> Can<'d, T> {
/// Useful for doing separate transmit/receive tasks.
pub fn split<'c>(&'c mut self) -> (CanTx<'d, T>, CanRx<'d, T>) {
let (tx, rx) = self.can.split_by_ref();
(CanTx { tx }, CanRx { rx})
(CanTx { tx }, CanRx { rx })
}
}
@ -459,10 +423,7 @@ impl<'d, T: Instance> CanRx<'d, T> {
}
}
enum RxFifo {
Fifo0,
Fifo1,
}
use crate::can::bx::RxFifo;
impl<'d, T: Instance> Drop for Can<'d, T> {
fn drop(&mut self) {
@ -601,21 +562,4 @@ impl Index for crate::can::bx::Mailbox {
}
}
trait IntoBusError {
fn into_bus_err(self) -> Option<BusError>;
}
impl IntoBusError for Lec {
fn into_bus_err(self) -> Option<BusError> {
match self {
Lec::STUFF => Some(BusError::Stuff),
Lec::FORM => Some(BusError::Form),
Lec::ACK => Some(BusError::Acknowledge),
Lec::BITRECESSIVE => Some(BusError::BitRecessive),
Lec::BITDOMINANT => Some(BusError::BitDominant),
Lec::CRC => Some(BusError::Crc),
Lec::CUSTOM => Some(BusError::Software),
_ => None,
}
}
}

View File

@ -1,8 +1,15 @@
use embassy_sync::channel::{DynamicReceiver, DynamicSender};
use crate::can::_version::frame::*;
use crate::can::_version::Timestamp;
use crate::can::_version::enums::*;
use crate::can::_version::frame::*;
/// Timestamp for incoming packets. Use Embassy time when enabled.
#[cfg(feature = "time")]
pub type Timestamp = embassy_time::Instant;
/// Timestamp for incoming packets.
#[cfg(not(feature = "time"))]
pub type Timestamp = u16;
pub(crate) struct ClassicBufferedRxInner {
pub rx_sender: DynamicSender<'static, Result<(ClassicFrame, Timestamp), BusError>>,
@ -48,4 +55,3 @@ impl BufferedCanSender {
/// Receiver that can be used for receiving CAN frames. Note, each CAN frame will only be received by one receiver.
pub type BufferedCanReceiver =
embassy_sync::channel::DynamicReceiver<'static, Result<(ClassicFrame, Timestamp), BusError>>;

View File

@ -25,7 +25,8 @@ use fd::config::*;
use fd::filter::*;
pub use fd::{config, filter};
use frame::*;
pub use self::common::{BufferedCanSender, BufferedCanReceiver};
pub use self::common::{BufferedCanReceiver, BufferedCanSender};
/// Timestamp for incoming packets. Use Embassy time when enabled.
#[cfg(feature = "time")]
@ -416,7 +417,6 @@ pub struct BufferedCan<'d, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_S
rx_buf: &'static RxBuf<RX_BUF_SIZE>,
}
impl<'c, 'd, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize>
BufferedCan<'d, T, TX_BUF_SIZE, RX_BUF_SIZE>
{