stm32: Clean up the lptim driver

This commit is contained in:
Romain Goyet 2024-09-04 14:46:35 -04:00 committed by Dario Nieuwenhuis
parent a1c9a2e8bd
commit 3b8859653e
4 changed files with 369 additions and 226 deletions

View File

@ -1,145 +1,49 @@
//! Low-power timer (LPTIM)
mod traits;
pub mod pwm;
pub mod timer;
use core::marker::PhantomData;
use crate::rcc::RccPeripheral;
use embassy_hal_internal::{into_ref, PeripheralRef};
pub use traits::Instance;
use crate::gpio::{AfType, AnyPin, OutputType, Speed};
// use crate::time::Hertz;
use crate::{rcc, Peripheral};
/// LPTIM master instance.
pub struct Master<T: Instance> {
phantom: PhantomData<T>,
}
/// LPTIM channel 1 instance.
pub struct Ch1<T: Instance> {
phantom: PhantomData<T>,
}
/// LPTIM channel 2 instance.
pub struct Ch2<T: Instance> {
phantom: PhantomData<T>,
}
trait SealedChannel<T: Instance> {
fn raw() -> usize;
}
/// channel instance trait.
#[allow(private_bounds)]
pub trait Channel<T: Instance>: SealedChannel<T> {}
/// LPTIM PWM pin.
pub struct PwmPin<'d, T, C> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(T, C)>,
}
macro_rules! channel_impl {
($new_chx:ident, $channel:tt, $ch_num:expr, $pin_trait:ident) => {
impl<'d, T: Instance> PwmPin<'d, T, $channel<T>> {
#[doc = concat!("Create a new ", stringify!($channel), " PWM pin instance.")]
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(
pin.af_num(),
AfType::output(OutputType::PushPull, Speed::VeryHigh),
);
});
PwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
impl<T: Instance> SealedChannel<T> for $channel<T> {
fn raw() -> usize {
$ch_num
}
}
impl<T: Instance> Channel<T> for $channel<T> {}
};
}
channel_impl!(new_ch1, Ch1, 0, Channel1Pin);
channel_impl!(new_ch2, Ch2, 1, Channel2Pin);
/// Struct used to divide a high resolution timer into multiple channels
pub struct Pwm<'d, T: Instance> {
_inner: PeripheralRef<'d, T>,
/// Master instance.
pub master: Master<T>,
/// Timer channel.
#[derive(Clone, Copy)]
pub enum Channel {
/// Channel 1.
pub ch_1: Ch1<T>,
Ch1,
/// Channel 2.
pub ch_2: Ch2<T>,
Ch2,
}
impl<'d, T: Instance> Pwm<'d, T> {
/// Create a new LPTIM driver.
///
/// This splits the LPTIM into its constituent parts, which you can then use individually.
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_ch1: Option<PwmPin<'d, T, Ch1<T>>>,
_ch2: Option<PwmPin<'d, T, Ch2<T>>>,
) -> Self {
Self::new_inner(tim)
}
fn new_inner(tim: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(tim);
rcc::enable_and_reset::<T>();
T::regs().cr().modify(|w| w.set_enable(true));
// Set frequency. Should be configurable.
// By default, 16MHz. We want 440Hz.
// That's 36363 cycles
T::regs().arr().write_value(stm32_metapac::lptim::regs::Arr(36363));
// Set duty cycle. Should be configurable. Should take care of channel too (only Ch1 now)
T::regs().ccr(0).write_value(stm32_metapac::lptim::regs::Ccr(18181));
// Enable channel as PWM. Default state anyway. Implement later.
// T::regs().ccmr().modify(|w| {
// w.set_ccsel(0, 0);
// w.set_ccsel(1, 0);
// })
// Enable output on pins. Should care about the channels!
T::regs().ccmr().modify(|w| {
w.set_cce(0, true);
w.set_cce(1, true);
});
Self {
_inner: tim,
master: Master { phantom: PhantomData },
ch_1: Ch1 { phantom: PhantomData },
ch_2: Ch2 { phantom: PhantomData },
impl Channel {
/// Get the channel index (0..1)
pub fn index(&self) -> usize {
match self {
Channel::Ch1 => 0,
Channel::Ch2 => 1,
}
}
/// Start
pub fn start(&mut self) {
T::regs().cr().modify(|w| w.set_cntstrt(true));
}
/// Stop
pub fn stop(&mut self) {
T::regs().cr().modify(|w| w.set_cntstrt(false));
}
}
pin_trait!(Channel1Pin, Instance);
pin_trait!(Channel2Pin, Instance);
pub(crate) trait SealedInstance: RccPeripheral {
fn regs() -> crate::pac::lptim::LptimAdv;
}
/// LPTIM instance trait.
#[allow(private_bounds)]
pub trait Instance: SealedInstance + 'static {}
foreach_interrupt! {
($inst:ident, lptim, LPTIM_ADV, UP, $irq:ident) => {
impl SealedInstance for crate::peripherals::$inst {
fn regs() -> crate::pac::lptim::LptimAdv {
crate::pac::$inst
}
}
impl Instance for crate::peripherals::$inst {
}
};
}

View File

@ -0,0 +1,122 @@
//! PWM driver.
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, PeripheralRef};
use super::timer::{ChannelDirection, Timer};
use super::{Channel, Channel1Pin, Channel2Pin, Instance};
use crate::gpio::{AfType, AnyPin, OutputType, Speed};
use crate::time::Hertz;
use crate::Peripheral;
/// Channel 1 marker type.
pub enum Ch1 {}
/// Channel 2 marker type.
pub enum Ch2 {}
/// PWM pin wrapper.
///
/// This wraps a pin to make it usable with PWM.
pub struct PwmPin<'d, T, C> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(T, C)>,
}
macro_rules! channel_impl {
($new_chx:ident, $channel:ident, $pin_trait:ident) => {
impl<'d, T: Instance> PwmPin<'d, T, $channel> {
#[doc = concat!("Create a new ", stringify!($channel), " PWM pin instance.")]
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
pin.set_low();
pin.set_as_af(
pin.af_num(),
AfType::output(OutputType::PushPull, Speed::VeryHigh),
);
});
PwmPin {
_pin: pin.map_into(),
phantom: PhantomData,
}
}
}
};
}
channel_impl!(new_ch1, Ch1, Channel1Pin);
channel_impl!(new_ch2, Ch2, Channel2Pin);
/// PWM driver.
pub struct Pwm<'d, T: Instance> {
inner: Timer<'d, T>, // _inner: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Pwm<'d, T> {
/// Create a new PWM driver.
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_ch1_pin: Option<PwmPin<'d, T, Ch1>>,
_ch2_pin: Option<PwmPin<'d, T, Ch2>>,
freq: Hertz,
) -> Self {
let mut this = Self { inner: Timer::new(tim) };
this.inner.enable();
this.set_frequency(freq);
[Channel::Ch1, Channel::Ch2].iter().for_each(|&channel| {
this.inner.set_channel_direction(channel, ChannelDirection::OutputPwm);
});
this.inner.continuous_mode_start();
this
}
/// Enable the given channel.
pub fn enable(&mut self, channel: Channel) {
self.inner.enable_channel(channel, true);
}
/// Disable the given channel.
pub fn disable(&mut self, channel: Channel) {
self.inner.enable_channel(channel, false);
}
/// Check whether given channel is enabled
pub fn is_enabled(&self, channel: Channel) -> bool {
self.inner.get_channel_enable_state(channel)
}
/// Set PWM frequency.
///
/// Note: when you call this, the max duty value changes, so you will have to
/// call `set_duty` on all channels with the duty calculated based on the new max duty.
pub fn set_frequency(&mut self, frequency: Hertz) {
self.inner.set_frequency(frequency);
}
/// Get max duty value.
///
/// This value depends on the configured frequency and the timer's clock rate from RCC.
pub fn get_max_duty(&self) -> u16 {
self.inner.get_max_compare_value() + 1
}
/// Set the duty for a given channel.
///
/// The value ranges from 0 for 0% duty, to [`get_max_duty`](Self::get_max_duty) for 100% duty, both included.
pub fn set_duty(&mut self, channel: Channel, duty: u16) {
assert!(duty <= self.get_max_duty());
self.inner.set_compare_value(channel, duty)
}
/// Get the duty for a given channel.
///
/// The value ranges from 0 for 0% duty, to [`get_max_duty`](Self::get_max_duty) for 100% duty, both included.
pub fn get_duty(&self, channel: Channel) -> u16 {
self.inner.get_compare_value(channel)
}
}

View File

@ -0,0 +1,212 @@
//! Low-level timer driver.
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
use super::{Channel, Instance};
use crate::pac::lptim::vals;
use crate::rcc;
use crate::time::Hertz;
/// Direction of a low-power timer channel
pub enum ChannelDirection {
/// Use channel as a PWM output
OutputPwm,
/// Use channel as an input capture
InputCapture,
}
impl From<ChannelDirection> for vals::Ccsel {
fn from(direction: ChannelDirection) -> Self {
match direction {
ChannelDirection::OutputPwm => vals::Ccsel::OUTPUTCOMPARE,
ChannelDirection::InputCapture => vals::Ccsel::INPUTCAPTURE,
}
}
}
enum Prescaler {
Div1,
Div2,
Div4,
Div8,
Div16,
Div32,
Div64,
Div128,
}
impl From<&Prescaler> for vals::Presc {
fn from(prescaler: &Prescaler) -> Self {
match prescaler {
Prescaler::Div1 => vals::Presc::DIV1,
Prescaler::Div2 => vals::Presc::DIV2,
Prescaler::Div4 => vals::Presc::DIV4,
Prescaler::Div8 => vals::Presc::DIV8,
Prescaler::Div16 => vals::Presc::DIV16,
Prescaler::Div32 => vals::Presc::DIV32,
Prescaler::Div64 => vals::Presc::DIV64,
Prescaler::Div128 => vals::Presc::DIV128,
}
}
}
impl From<vals::Presc> for Prescaler {
fn from(prescaler: vals::Presc) -> Self {
match prescaler {
vals::Presc::DIV1 => Prescaler::Div1,
vals::Presc::DIV2 => Prescaler::Div2,
vals::Presc::DIV4 => Prescaler::Div4,
vals::Presc::DIV8 => Prescaler::Div8,
vals::Presc::DIV16 => Prescaler::Div16,
vals::Presc::DIV32 => Prescaler::Div32,
vals::Presc::DIV64 => Prescaler::Div64,
vals::Presc::DIV128 => Prescaler::Div128,
}
}
}
impl From<&Prescaler> for u32 {
fn from(prescaler: &Prescaler) -> Self {
match prescaler {
Prescaler::Div1 => 1,
Prescaler::Div2 => 2,
Prescaler::Div4 => 4,
Prescaler::Div8 => 8,
Prescaler::Div16 => 16,
Prescaler::Div32 => 32,
Prescaler::Div64 => 64,
Prescaler::Div128 => 128,
}
}
}
impl From<u32> for Prescaler {
fn from(prescaler: u32) -> Self {
match prescaler {
1 => Prescaler::Div1,
2 => Prescaler::Div2,
4 => Prescaler::Div4,
8 => Prescaler::Div8,
16 => Prescaler::Div16,
32 => Prescaler::Div32,
64 => Prescaler::Div64,
128 => Prescaler::Div128,
_ => unreachable!(),
}
}
}
impl Prescaler {
pub fn from_ticks(ticks: u32) -> Self {
// We need to scale down to a 16-bit range
(ticks >> 16).next_power_of_two().into()
}
pub fn scale_down(&self, ticks: u32) -> u16 {
(ticks / u32::from(self)).try_into().unwrap()
}
pub fn scale_up(&self, ticks: u16) -> u32 {
u32::from(self) * ticks as u32
}
}
/// Low-level timer driver.
pub struct Timer<'d, T: Instance> {
_tim: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Timer<'d, T> {
/// Create a new timer driver.
pub fn new(tim: impl Peripheral<P = T> + 'd) -> Self {
into_ref!(tim);
rcc::enable_and_reset::<T>();
Self { _tim: tim }
}
/// Enable the timer.
pub fn enable(&self) {
T::regs().cr().modify(|w| w.set_enable(true));
}
/// Disable the timer.
pub fn disable(&self) {
T::regs().cr().modify(|w| w.set_enable(false));
}
/// Start the timer in single pulse mode.
pub fn single_mode_start(&self) {
T::regs().cr().modify(|w| w.set_sngstrt(true));
}
/// Start the timer in continuous mode.
pub fn continuous_mode_start(&self) {
T::regs().cr().modify(|w| w.set_cntstrt(true));
}
/// Set channel direction.
pub fn set_channel_direction(&self, channel: Channel, direction: ChannelDirection) {
T::regs()
.ccmr()
.modify(|w| w.set_ccsel(channel.index(), direction.into()));
}
/// Set the frequency of how many times per second the timer counts up to the max value or down to 0.
pub fn set_frequency(&self, frequency: Hertz) {
let f = frequency.0;
assert!(f > 0);
let pclk_f = T::frequency().0;
let pclk_ticks_per_timer_period = pclk_f / f;
let psc = Prescaler::from_ticks(pclk_ticks_per_timer_period);
let arr = psc.scale_down(pclk_ticks_per_timer_period);
T::regs().cfgr().modify(|r| r.set_presc((&psc).into()));
T::regs().arr().modify(|r| r.set_arr(arr.into()));
}
/// Get the timer frequency.
pub fn get_frequency(&self) -> Hertz {
let pclk_f = T::frequency();
let arr = T::regs().arr().read().arr();
let psc = Prescaler::from(T::regs().cfgr().read().presc());
pclk_f / psc.scale_up(arr)
}
/// Get the clock frequency of the timer (before prescaler is applied).
pub fn get_clock_frequency(&self) -> Hertz {
T::frequency()
}
/// Enable/disable a channel.
pub fn enable_channel(&self, channel: Channel, enable: bool) {
T::regs().ccmr().modify(|w| {
w.set_cce(channel.index(), enable);
});
}
/// Get enable/disable state of a channel
pub fn get_channel_enable_state(&self, channel: Channel) -> bool {
T::regs().ccmr().read().cce(channel.index())
}
/// Set compare value for a channel.
pub fn set_compare_value(&self, channel: Channel, value: u16) {
T::regs().ccr(channel.index()).modify(|w| w.set_ccr(value));
}
/// Get compare value for a channel.
pub fn get_compare_value(&self, channel: Channel) -> u16 {
T::regs().ccr(channel.index()).read().ccr()
}
/// Get max compare value. This depends on the timer frequency and the clock frequency from RCC.
pub fn get_max_compare_value(&self) -> u16 {
T::regs().arr().read().arr()
}
}

View File

@ -1,95 +0,0 @@
use crate::rcc::RccPeripheral;
use crate::time::Hertz;
#[repr(u8)]
#[derive(Clone, Copy)]
pub(crate) enum Prescaler {
Div1 = 1,
Div2 = 2,
Div4 = 4,
Div8 = 8,
Div16 = 16,
Div32 = 32,
Div64 = 64,
Div128 = 128,
}
impl From<Prescaler> for u8 {
fn from(val: Prescaler) -> Self {
match val {
Prescaler::Div1 => 0b000,
Prescaler::Div2 => 0b001,
Prescaler::Div4 => 0b010,
Prescaler::Div8 => 0b011,
Prescaler::Div16 => 0b100,
Prescaler::Div32 => 0b101,
Prescaler::Div64 => 0b110,
Prescaler::Div128 => 0b111,
}
}
}
impl From<u8> for Prescaler {
fn from(val: u8) -> Self {
match val {
0b000 => Prescaler::Div1,
0b001 => Prescaler::Div2,
0b010 => Prescaler::Div4,
0b011 => Prescaler::Div8,
0b100 => Prescaler::Div16,
0b101 => Prescaler::Div32,
0b110 => Prescaler::Div64,
0b111 => Prescaler::Div128,
_ => unreachable!(),
}
}
}
impl Prescaler {
pub fn compute_min_high_res(val: u32) -> Self {
*[
Prescaler::Div1,
Prescaler::Div2,
Prescaler::Div4,
Prescaler::Div8,
Prescaler::Div16,
Prescaler::Div32,
Prescaler::Div64,
Prescaler::Div128,
]
.iter()
.skip_while(|psc| **psc as u32 <= val)
.next()
.unwrap()
}
pub fn compute_min_low_res(val: u32) -> Self {
*[Prescaler::Div32, Prescaler::Div64, Prescaler::Div128]
.iter()
.skip_while(|psc| **psc as u32 <= val)
.next()
.unwrap()
}
}
pub(crate) trait SealedInstance: RccPeripheral {
fn regs() -> crate::pac::lptim::LptimAdv;
}
/// LPTIM instance trait.
#[allow(private_bounds)]
pub trait Instance: SealedInstance + 'static {}
foreach_interrupt! {
($inst:ident, lptim, LPTIM_ADV, UP, $irq:ident) => {
impl SealedInstance for crate::peripherals::$inst {
fn regs() -> crate::pac::lptim::LptimAdv {
crate::pac::$inst
}
}
impl Instance for crate::peripherals::$inst {
}
};
}