Merge pull request #3433 from 1-rafael-1/rp-pwm-embedded-hal-traits

embassy_rp: implement pwm traits from embedded_hal
This commit is contained in:
Ulf Lilleengen 2024-10-22 07:52:03 +00:00 committed by GitHub
commit 0c22d4cccb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 260 additions and 17 deletions

View File

@ -118,18 +118,18 @@ embassy-usb-driver = {version = "0.1.0", path = "../embassy-usb-driver" }
atomic-polyfill = "1.0.1" atomic-polyfill = "1.0.1"
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true } log = { version = "0.4.14", optional = true }
nb = "1.0.0" nb = "1.1.0"
cfg-if = "1.0.0" cfg-if = "1.0.0"
cortex-m-rt = ">=0.6.15,<0.8" cortex-m-rt = ">=0.6.15,<0.8"
cortex-m = "0.7.6" cortex-m = "0.7.6"
critical-section = "1.1" critical-section = "1.2.0"
chrono = { version = "0.4", default-features = false, optional = true } chrono = { version = "0.4", default-features = false, optional = true }
embedded-io = { version = "0.6.1" } embedded-io = { version = "0.6.1" }
embedded-io-async = { version = "0.6.1" } embedded-io-async = { version = "0.6.1" }
embedded-storage = { version = "0.3" } embedded-storage = { version = "0.3" }
embedded-storage-async = { version = "0.4.1" } embedded-storage-async = { version = "0.4.1" }
rand_core = "0.6.4" rand_core = "0.6.4"
fixed = "1.23.1" fixed = "1.28.0"
rp-pac = { git = "https://github.com/embassy-rs/rp-pac.git", rev = "a7f42d25517f7124ad3b4ed492dec8b0f50a0e6c", feature = ["rt"] } rp-pac = { git = "https://github.com/embassy-rs/rp-pac.git", rev = "a7f42d25517f7124ad3b4ed492dec8b0f50a0e6c", feature = ["rt"] }
@ -141,7 +141,7 @@ embedded-hal-nb = { version = "1.0" }
pio-proc = {version= "0.2" } pio-proc = {version= "0.2" }
pio = {version= "0.2.1" } pio = {version= "0.2.1" }
rp2040-boot2 = "0.3" rp2040-boot2 = "0.3"
document-features = "0.2.7" document-features = "0.2.10"
sha2-const-stable = "0.1" sha2-const-stable = "0.1"
rp-binary-info = { version = "0.1.0", optional = true } rp-binary-info = { version = "0.1.0", optional = true }
smart-leds = "0.4.0" smart-leds = "0.4.0"

View File

@ -1,6 +1,8 @@
//! Pulse Width Modulation (PWM) //! Pulse Width Modulation (PWM)
use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef}; use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
pub use embedded_hal_1::pwm::SetDutyCycle;
use embedded_hal_1::pwm::{Error, ErrorKind, ErrorType};
use fixed::traits::ToFixed; use fixed::traits::ToFixed;
use fixed::FixedU16; use fixed::FixedU16;
use pac::pwm::regs::{ChDiv, Intr}; use pac::pwm::regs::{ChDiv, Intr};
@ -80,6 +82,21 @@ impl From<InputMode> for Divmode {
} }
} }
/// PWM error.
#[derive(Debug)]
pub enum PwmError {
/// Invalid Duty Cycle.
InvalidDutyCycle,
}
impl Error for PwmError {
fn kind(&self) -> ErrorKind {
match self {
PwmError::InvalidDutyCycle => ErrorKind::Other,
}
}
}
/// PWM driver. /// PWM driver.
pub struct Pwm<'d> { pub struct Pwm<'d> {
pin_a: Option<PeripheralRef<'d, AnyPin>>, pin_a: Option<PeripheralRef<'d, AnyPin>>,
@ -87,6 +104,30 @@ pub struct Pwm<'d> {
slice: usize, slice: usize,
} }
impl<'d> ErrorType for Pwm<'d> {
type Error = PwmError;
}
impl<'d> SetDutyCycle for Pwm<'d> {
fn max_duty_cycle(&self) -> u16 {
pac::PWM.ch(self.slice).top().read().top()
}
fn set_duty_cycle(&mut self, duty: u16) -> Result<(), Self::Error> {
let max_duty = self.max_duty_cycle();
if duty > max_duty {
return Err(PwmError::InvalidDutyCycle);
}
let p = pac::PWM.ch(self.slice);
p.cc().modify(|w| {
w.set_a(duty);
w.set_b(duty);
});
Ok(())
}
}
impl<'d> Pwm<'d> { impl<'d> Pwm<'d> {
fn new_inner( fn new_inner(
slice: usize, slice: usize,

View File

@ -1,24 +1,36 @@
//! This example shows how to use PWM (Pulse Width Modulation) in the RP2040 chip. //! This example shows how to use PWM (Pulse Width Modulation) in the RP2040 chip.
//! //!
//! The LED on the RP Pico W board is connected differently. Add a LED and resistor to another pin. //! We demonstrate two ways of using PWM:
//! 1. Via config
//! 2. Via setting a duty cycle
#![no_std] #![no_std]
#![no_main] #![no_main]
use defmt::*; use defmt::*;
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_rp::pwm::{Config, Pwm}; use embassy_rp::peripherals::{PIN_25, PIN_4, PWM_SLICE2, PWM_SLICE4};
use embassy_rp::pwm::{Config, Pwm, SetDutyCycle};
use embassy_time::Timer; use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main] #[embassy_executor::main]
async fn main(_spawner: Spawner) { async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());
spawner.spawn(pwm_set_config(p.PWM_SLICE4, p.PIN_25)).unwrap();
spawner.spawn(pwm_set_dutycycle(p.PWM_SLICE2, p.PIN_4)).unwrap();
}
let mut c: Config = Default::default(); /// Demonstrate PWM by modifying & applying the config
c.top = 0x8000; ///
/// Using the onboard led, if You are using a different Board than plain Pico2 (i.e. W variant)
/// you must use another slice & pin and an appropriate resistor.
#[embassy_executor::task]
async fn pwm_set_config(slice4: PWM_SLICE4, pin25: PIN_25) {
let mut c = Config::default();
c.top = 32_768;
c.compare_b = 8; c.compare_b = 8;
let mut pwm = Pwm::new_output_b(p.PWM_SLICE4, p.PIN_25, c.clone()); let mut pwm = Pwm::new_output_b(slice4, pin25, c.clone());
loop { loop {
info!("current LED duty cycle: {}/32768", c.compare_b); info!("current LED duty cycle: {}/32768", c.compare_b);
@ -27,3 +39,37 @@ async fn main(_spawner: Spawner) {
pwm.set_config(&c); pwm.set_config(&c);
} }
} }
/// Demonstrate PWM by setting duty cycle
///
/// Using GP4 in Slice2, make sure to use an appropriate resistor.
#[embassy_executor::task]
async fn pwm_set_dutycycle(slice2: PWM_SLICE2, pin4: PIN_4) {
// If we aim for a specific frequency, here is how we can calculate the top value.
// The top value sets the period of the PWM cycle, so a counter goes from 0 to top and then wraps around to 0.
// Every such wraparound is one PWM cycle. So here is how we get 25KHz:
let mut c = Config::default();
let pwm_freq = 25_000; // Hz, our desired frequency
let clock_freq = embassy_rp::clocks::clk_sys_freq();
c.top = (clock_freq / pwm_freq) as u16 - 1;
let mut pwm = Pwm::new_output_a(slice2, pin4, c.clone());
loop {
// 100% duty cycle, fully on
pwm.set_duty_cycle_fully_on().unwrap();
Timer::after_secs(1).await;
// 66% duty cycle. Expressed as simple percentage.
pwm.set_duty_cycle_percent(66).unwrap();
Timer::after_secs(1).await;
// 25% duty cycle. Expressed as 32768/4 = 8192.
pwm.set_duty_cycle(c.top / 4).unwrap();
Timer::after_secs(1).await;
// 0% duty cycle, fully off.
pwm.set_duty_cycle_fully_off().unwrap();
Timer::after_secs(1).await;
}
}

View File

@ -30,6 +30,9 @@ serde-json-core = "0.5.1"
# for assign resources example # for assign resources example
assign-resources = { git = "https://github.com/adamgreig/assign-resources", rev = "94ad10e2729afdf0fd5a77cd12e68409a982f58a" } assign-resources = { git = "https://github.com/adamgreig/assign-resources", rev = "94ad10e2729afdf0fd5a77cd12e68409a982f58a" }
# for TB6612FNG example
tb6612fng = "1.0.0"
#cortex-m = { version = "0.7.6", features = ["critical-section-single-core"] } #cortex-m = { version = "0.7.6", features = ["critical-section-single-core"] }
cortex-m = { version = "0.7.6", features = ["inline-asm"] } cortex-m = { version = "0.7.6", features = ["inline-asm"] }
cortex-m-rt = "0.7.0" cortex-m-rt = "0.7.0"

View File

@ -1,6 +1,8 @@
//! This example shows how to use PWM (Pulse Width Modulation) in the RP2040 chip. //! This example shows how to use PWM (Pulse Width Modulation) in the RP235x chip.
//! //!
//! The LED on the RP Pico W board is connected differently. Add a LED and resistor to another pin. //! We demonstrate two ways of using PWM:
//! 1. Via config
//! 2. Via setting a duty cycle
#![no_std] #![no_std]
#![no_main] #![no_main]
@ -8,7 +10,8 @@
use defmt::*; use defmt::*;
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_rp::block::ImageDef; use embassy_rp::block::ImageDef;
use embassy_rp::pwm::{Config, Pwm}; use embassy_rp::peripherals::{PIN_25, PIN_4, PWM_SLICE2, PWM_SLICE4};
use embassy_rp::pwm::{Config, Pwm, SetDutyCycle};
use embassy_time::Timer; use embassy_time::Timer;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
@ -17,13 +20,22 @@ use {defmt_rtt as _, panic_probe as _};
pub static IMAGE_DEF: ImageDef = ImageDef::secure_exe(); pub static IMAGE_DEF: ImageDef = ImageDef::secure_exe();
#[embassy_executor::main] #[embassy_executor::main]
async fn main(_spawner: Spawner) { async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default()); let p = embassy_rp::init(Default::default());
spawner.spawn(pwm_set_config(p.PWM_SLICE4, p.PIN_25)).unwrap();
spawner.spawn(pwm_set_dutycycle(p.PWM_SLICE2, p.PIN_4)).unwrap();
}
let mut c: Config = Default::default(); /// Demonstrate PWM by modifying & applying the config
c.top = 0x8000; ///
/// Using the onboard led, if You are using a different Board than plain Pico2 (i.e. W variant)
/// you must use another slice & pin and an appropriate resistor.
#[embassy_executor::task]
async fn pwm_set_config(slice4: PWM_SLICE4, pin25: PIN_25) {
let mut c = Config::default();
c.top = 32_768;
c.compare_b = 8; c.compare_b = 8;
let mut pwm = Pwm::new_output_b(p.PWM_SLICE4, p.PIN_25, c.clone()); let mut pwm = Pwm::new_output_b(slice4, pin25, c.clone());
loop { loop {
info!("current LED duty cycle: {}/32768", c.compare_b); info!("current LED duty cycle: {}/32768", c.compare_b);
@ -32,3 +44,37 @@ async fn main(_spawner: Spawner) {
pwm.set_config(&c); pwm.set_config(&c);
} }
} }
/// Demonstrate PWM by setting duty cycle
///
/// Using GP4 in Slice2, make sure to use an appropriate resistor.
#[embassy_executor::task]
async fn pwm_set_dutycycle(slice2: PWM_SLICE2, pin4: PIN_4) {
// If we aim for a specific frequency, here is how we can calculate the top value.
// The top value sets the period of the PWM cycle, so a counter goes from 0 to top and then wraps around to 0.
// Every such wraparound is one PWM cycle. So here is how we get 25KHz:
let mut c = Config::default();
let pwm_freq = 25_000; // Hz, our desired frequency
let clock_freq = embassy_rp::clocks::clk_sys_freq();
c.top = (clock_freq / pwm_freq) as u16 - 1;
let mut pwm = Pwm::new_output_a(slice2, pin4, c.clone());
loop {
// 100% duty cycle, fully on
pwm.set_duty_cycle_fully_on().unwrap();
Timer::after_secs(1).await;
// 66% duty cycle. Expressed as simple percentage.
pwm.set_duty_cycle_percent(66).unwrap();
Timer::after_secs(1).await;
// 25% duty cycle. Expressed as 32768/4 = 8192.
pwm.set_duty_cycle(c.top / 4).unwrap();
Timer::after_secs(1).await;
// 0% duty cycle, fully off.
pwm.set_duty_cycle_fully_off().unwrap();
Timer::after_secs(1).await;
}
}

View File

@ -0,0 +1,107 @@
//! # PWM TB6612FNG motor driver
//!
//! This example shows the use of a TB6612FNG motor driver. The driver is built on top of embedded_hal and the example demonstrates how embassy_rp can be used to interact with ist.
#![no_std]
#![no_main]
use assign_resources::assign_resources;
use defmt::*;
use embassy_executor::Spawner;
use embassy_rp::block::ImageDef;
use embassy_rp::config::Config;
use embassy_rp::gpio::Output;
use embassy_rp::{gpio, peripherals, pwm};
use embassy_time::{Duration, Timer};
use tb6612fng::{DriveCommand, Motor, Tb6612fng};
use {defmt_rtt as _, panic_probe as _};
#[link_section = ".start_block"]
#[used]
pub static IMAGE_DEF: ImageDef = ImageDef::secure_exe();
assign_resources! {
motor: MotorResources {
standby_pin: PIN_22,
left_slice: PWM_SLICE6,
left_pwm_pin: PIN_28,
left_forward_pin: PIN_21,
left_backward_pin: PIN_20,
right_slice: PWM_SLICE5,
right_pwm_pin: PIN_27,
right_forward_pin: PIN_19,
right_backward_pin: PIN_18,
},
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Config::default());
let s = split_resources!(p);
let r = s.motor;
// we want a PWM frequency of 1KHz, especially cheaper motors do not respond well to higher frequencies
let pwm_freq = 1_000; // Hz, our desired frequency
let clock_freq = embassy_rp::clocks::clk_sys_freq();
let period = (clock_freq / pwm_freq) as u16 - 1;
// we need a standby output and two motors to construct a full TB6612FNG
// standby pin
let stby = Output::new(r.standby_pin, gpio::Level::Low);
// motor A, here defined to be the left motor
let left_fwd = gpio::Output::new(r.left_forward_pin, gpio::Level::Low);
let left_bckw = gpio::Output::new(r.left_backward_pin, gpio::Level::Low);
let mut left_speed = pwm::Config::default();
left_speed.top = period;
let left_pwm = pwm::Pwm::new_output_a(r.left_slice, r.left_pwm_pin, left_speed);
let left_motor = Motor::new(left_fwd, left_bckw, left_pwm).unwrap();
// motor B, here defined to be the right motor
let right_fwd = gpio::Output::new(r.right_forward_pin, gpio::Level::Low);
let right_bckw = gpio::Output::new(r.right_backward_pin, gpio::Level::Low);
let mut right_speed = pwm::Config::default();
right_speed.top = period;
let right_pwm = pwm::Pwm::new_output_b(r.right_slice, r.right_pwm_pin, right_speed);
let right_motor = Motor::new(right_fwd, right_bckw, right_pwm).unwrap();
// construct the motor driver
let mut control = Tb6612fng::new(left_motor, right_motor, stby).unwrap();
loop {
// wake up the motor driver
info!("end standby");
control.disable_standby().unwrap();
Timer::after(Duration::from_millis(100)).await;
// drive a straight line forward at 20% speed for 5s
info!("drive straight");
control.motor_a.drive(DriveCommand::Forward(80)).unwrap();
control.motor_b.drive(DriveCommand::Forward(80)).unwrap();
Timer::after(Duration::from_secs(5)).await;
// coast for 2s
info!("coast");
control.motor_a.drive(DriveCommand::Stop).unwrap();
control.motor_b.drive(DriveCommand::Stop).unwrap();
Timer::after(Duration::from_secs(2)).await;
// actively brake
info!("brake");
control.motor_a.drive(DriveCommand::Brake).unwrap();
control.motor_b.drive(DriveCommand::Brake).unwrap();
Timer::after(Duration::from_secs(1)).await;
// slowly turn for 3s
info!("turn");
control.motor_a.drive(DriveCommand::Backward(50)).unwrap();
control.motor_b.drive(DriveCommand::Forward(50)).unwrap();
Timer::after(Duration::from_secs(3)).await;
// and put the driver in standby mode and wait for 5s
info!("standby");
control.enable_standby().unwrap();
Timer::after(Duration::from_secs(5)).await;
}
}