This commit is contained in:
Tyler 2025-04-14 00:12:09 +02:00 committed by GitHub
commit 0ad5903c64
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 419 additions and 16 deletions
embassy-stm32/src

View File

@ -1,13 +1,14 @@
#![macro_use]
use core::future::Future;
use core::future::{poll_fn, Future};
use core::pin::Pin;
use core::sync::atomic::{fence, Ordering};
use core::task::{Context, Poll};
use core::sync::atomic::{fence, AtomicBool, AtomicUsize, Ordering};
use core::task::{Context, Poll, Waker};
use embassy_hal_internal::Peri;
use embassy_sync::waitqueue::AtomicWaker;
use super::ringbuffer::{DmaCtrl, Error, ReadableDmaRingBuffer, WritableDmaRingBuffer};
use super::word::{Word, WordSize};
use super::{AnyChannel, Channel, Dir, Request, STATE};
use crate::interrupt::typelevel::Interrupt;
@ -26,11 +27,16 @@ pub(crate) struct ChannelInfo {
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub struct TransferOptions {}
pub struct TransferOptions {
/// If true, the half transfer interrupt will call the waker.
pub half_transfer_ir: bool,
}
impl Default for TransferOptions {
fn default() -> Self {
Self {}
Self {
half_transfer_ir: false,
}
}
}
@ -46,11 +52,17 @@ impl From<WordSize> for vals::Dw {
pub(crate) struct ChannelState {
waker: AtomicWaker,
circular_address: AtomicUsize,
complete_count: AtomicUsize,
is_wake_on_half_transfer: AtomicBool,
}
impl ChannelState {
pub(crate) const NEW: Self = Self {
waker: AtomicWaker::new(),
circular_address: AtomicUsize::new(0),
complete_count: AtomicUsize::new(0),
is_wake_on_half_transfer: AtomicBool::new(false),
};
}
@ -88,6 +100,7 @@ impl AnyChannel {
info.num
);
}
if sr.usef() {
panic!(
"DMA: user settings error on DMA@{:08x} channel {}",
@ -96,7 +109,23 @@ impl AnyChannel {
);
}
if sr.suspf() || sr.tcf() {
if sr.htf() {
//clear the flag for the half transfer complete
ch.fcr().modify(|w| w.set_htf(true));
if state.is_wake_on_half_transfer.load(Ordering::Relaxed) {
state.waker.wake();
}
}
if sr.tcf() {
//clear the flag for the transfer complete so circular transfers can resume
ch.fcr().modify(|w| w.set_tcf(true));
state.complete_count.fetch_add(1, Ordering::Relaxed);
state.waker.wake();
return;
}
if sr.suspf() {
// disable all xxIEs to prevent the irq from firing again.
ch.cr().write(|_| {});
@ -337,3 +366,381 @@ impl<'a> Future for Transfer<'a> {
}
}
}
struct DmaCtrlImpl<'a>(Peri<'a, AnyChannel>, WordSize);
impl<'a> DmaCtrl for DmaCtrlImpl<'a> {
fn get_remaining_transfers(&self) -> usize {
let info = self.0.info();
let ch = info.dma.ch(info.num);
(ch.br1().read().bndt() / self.1.bytes() as u16) as usize
}
fn reset_complete_count(&mut self) -> usize {
let state = &STATE[self.0.id as usize];
#[cfg(not(armv6m))]
return state.complete_count.swap(0, Ordering::AcqRel);
#[cfg(armv6m)]
return critical_section::with(|_| {
let x = state.complete_count.load(Ordering::Acquire);
state.complete_count.store(0, Ordering::Release);
x
});
}
fn set_waker(&mut self, waker: &Waker) {
STATE[self.0.id as usize].waker.register(waker);
}
}
impl AnyChannel {
fn configure<'a, W: Word>(
&self,
request: Request,
dir: Dir,
peri_addr: *mut W,
buffer: &'a mut [W],
options: TransferOptions,
) {
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::SeqCst);
let info = self.info();
let ch = info.dma.ch(info.num);
let (mem_addr, mem_len): (usize, usize) = unsafe { core::mem::transmute(buffer) };
ch.cr().write(|w| w.set_reset(true));
ch.fcr().write(|w| w.0 = 0xFFFF_FFFF); // clear all irqs
if mem_addr & 0b11 != 0 {
panic!("circular address must be 4-byte aligned");
}
let state = &STATE[self.id as usize];
defmt::info!("Circular address: {:#x}", mem_addr);
state.circular_address.store(mem_addr, Ordering::Release);
state
.is_wake_on_half_transfer
.store(options.half_transfer_ir, Ordering::Release);
let lli = state.circular_address.as_ptr() as u32;
ch.llr().write(|w| {
match dir {
Dir::MemoryToPeripheral => w.set_usa(true),
Dir::PeripheralToMemory => w.set_uda(true),
}
// lower 16 bits of the memory address
w.set_la(((lli >> 2usize) & 0x3fff) as u16);
});
ch.lbar().write(|w| {
// upper 16 bits of the address of lli1
w.set_lba((lli >> 16usize) as u16);
});
let data_size = W::size();
ch.tr1().write(|w| {
w.set_sdw(data_size.into());
w.set_ddw(data_size.into());
w.set_sinc(dir == Dir::MemoryToPeripheral);
w.set_dinc(dir == Dir::PeripheralToMemory);
});
ch.tr2().write(|w| {
w.set_dreq(match dir {
Dir::MemoryToPeripheral => vals::Dreq::DESTINATION_PERIPHERAL,
Dir::PeripheralToMemory => vals::Dreq::SOURCE_PERIPHERAL,
});
w.set_reqsel(request);
});
ch.br1().write(|w| {
// BNDT is specified as bytes, not as number of transfers.
w.set_bndt((mem_len * data_size.bytes()) as u16)
});
match dir {
Dir::MemoryToPeripheral => {
ch.sar().write_value(mem_addr as _);
ch.dar().write_value(peri_addr as _);
}
Dir::PeripheralToMemory => {
ch.sar().write_value(peri_addr as _);
ch.dar().write_value(mem_addr as _);
}
}
}
fn is_running(&self) -> bool {
let info = self.info();
let ch = info.dma.ch(info.num);
let sr = ch.sr().read();
!sr.idlef() && !sr.suspf()
}
async fn stop(ch: stm32_metapac::gpdma::Channel, set_waker: &mut dyn FnMut(&Waker)) {
//wait until cr.susp reads as true
poll_fn(|cx| {
set_waker(cx.waker());
core::sync::atomic::compiler_fence(Ordering::SeqCst);
let cr = ch.cr().read();
if cr.susp() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await
}
fn clear_irqs(&self) {
let info = self.info();
let ch = info.dma.ch(info.num);
ch.fcr().modify(|w| {
w.set_htf(true);
w.set_tcf(true);
w.set_suspf(true);
});
}
fn request_suspend(&self) {
let info = self.info();
let ch = info.dma.ch(info.num);
ch.cr().modify(|w| {
w.set_susp(true);
});
}
fn request_stop(&self) {
let info = self.info();
let ch = info.dma.ch(info.num);
ch.cr().modify(|w| w.set_en(false));
}
fn start(&self) {
self.clear_irqs();
let info = self.info();
let ch = info.dma.ch(info.num);
ch.cr().modify(|w| {
w.set_susp(false);
w.set_en(true);
w.set_tcie(true);
w.set_useie(true);
w.set_dteie(true);
w.set_suspie(true);
w.set_htie(true);
});
}
}
/// This is a Readable ring buffer. It reads data from a peripheral into a buffer. The reads happen in circular mode.
/// There are interrupts on complete and half complete. You should read half the buffer on every read.
pub struct ReadableRingBuffer<'a, W: Word> {
channel: Peri<'a, AnyChannel>,
ringbuf: ReadableDmaRingBuffer<'a, W>,
}
impl<'a, W: Word> ReadableRingBuffer<'a, W> {
/// Create a new Readable ring buffer.
pub unsafe fn new(
channel: Peri<'a, impl Channel>,
request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
options: TransferOptions,
) -> Self {
let channel: Peri<'a, AnyChannel> = channel.into();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&mut channel, request);
channel.configure(request, Dir::PeripheralToMemory, peri_addr, buffer, options);
Self {
channel,
ringbuf: ReadableDmaRingBuffer::new(buffer),
}
}
/// Start reading the peripheral in ciccular mode.
pub fn start(&mut self) {
self.channel.start();
}
/// Request the transfer to stop. Use is_running() to see when the transfer is complete.
pub fn request_stop(&mut self) {
self.channel.request_suspend();
}
/// Await until the stop completes. This is not used with request_stop(). Just call and await.
/// It will stop when the current transfer is complete.
pub async fn stop(&mut self) {
let ch: stm32_metapac::gpdma::Channel = {
let info = self.channel.info();
info.dma.ch(info.num)
};
AnyChannel::stop(ch, &mut |waker| self.set_waker(waker)).await
}
/// Clear the buffers internal pointers.
pub fn clear(&mut self) {
self.ringbuf.reset(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()));
}
/// Read elements from the ring buffer
/// Return a tuple of the length read and the length remaining in the buffer
/// If not all of the elements were read, then there will be some elements in the buffer remaining
/// The length remaining is the capacity, ring_buf.len(), less the elements remaining after the read
/// Error::Overrun is returned if the portion to be read was overwritten by the DMA controller.
pub fn read(&mut self, buf: &mut [W]) -> Result<(usize, usize), Error> {
self.ringbuf
.read(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()), buf)
}
/// Read an exact number of elements from the ringbuffer.
///
/// Returns the remaining number of elements available for immediate reading.
/// OverrunError is returned if the portion to be read was overwritten by the DMA controller.
///
/// Async/Wake Behavior:
/// The underlying DMA peripheral only can wake us when its buffer pointer has reached the halfway point,
/// and when it wraps around. This means that when called with a buffer of length 'M', when this
/// ring buffer was created with a buffer of size 'N':
/// - If M equals N/2 or N/2 divides evenly into M, this function will return every N/2 elements read on the DMA source.
/// - Otherwise, this function may need up to N/2 extra elements to arrive before returning.
pub async fn read_exact(&mut self, buffer: &mut [W]) -> Result<usize, Error> {
self.ringbuf
.read_exact(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()), buffer)
.await
}
/// The capacity of the ringbuffer
pub const fn cap(&self) -> usize {
self.ringbuf.cap()
}
/// Set the waker for the DMA controller.
pub fn set_waker(&mut self, waker: &Waker) {
DmaCtrlImpl(self.channel.reborrow(), W::size()).set_waker(waker);
}
/// Return whether this transfer is still running.
pub fn is_running(&mut self) -> bool {
self.channel.is_running()
}
}
impl<'a, W: Word> Drop for ReadableRingBuffer<'a, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}
/// This is a Writable ring buffer. It writes data from a buffer to a peripheral. The writes happen in circular mode.
pub struct WritableRingBuffer<'a, W: Word> {
#[allow(dead_code)] //this is only read by the DMA controller
channel: Peri<'a, AnyChannel>,
ringbuf: WritableDmaRingBuffer<'a, W>,
}
impl<'a, W: Word> WritableRingBuffer<'a, W> {
/// Create a new Writable ring buffer.
pub unsafe fn new(
channel: Peri<'a, impl Channel>,
request: Request,
peri_addr: *mut W,
buffer: &'a mut [W],
options: TransferOptions,
) -> Self {
let channel: Peri<'a, AnyChannel> = channel.into();
#[cfg(dmamux)]
super::dmamux::configure_dmamux(&mut channel, request);
channel.configure(request, Dir::MemoryToPeripheral, peri_addr, buffer, options);
Self {
channel,
ringbuf: WritableDmaRingBuffer::new(buffer),
}
}
/// Start writing to the peripheral in circular mode.
pub fn start(&mut self) {
self.channel.start();
}
/// Await until the stop completes. This is not used with request_stop(). Just call and await.
pub async fn stop(&mut self) {
let ch: stm32_metapac::gpdma::Channel = {
let info = self.channel.info();
info.dma.ch(info.num)
};
AnyChannel::stop(ch, &mut |waker| self.set_waker(waker)).await
}
/// Request the transfer to stop. Use is_running() to see when the transfer is complete.
pub fn request_stop(&mut self) {
self.channel.request_stop();
}
/// Write elements directly to the raw buffer.
/// This can be used to fill the buffer before starting the DMA transfer.
pub fn write_immediate(&mut self, buf: &[W]) -> Result<(usize, usize), Error> {
self.ringbuf.write_immediate(buf)
}
/// Wait for any ring buffer write error.
pub async fn wait_write_error(&mut self) -> Result<usize, Error> {
self.ringbuf
.wait_write_error(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()))
.await
}
/// Clear the buffers internal pointers.
pub fn clear(&mut self) {
self.ringbuf.reset(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()));
}
/// Write elements from the ring buffer
/// Return a tuple of the length written and the length remaining in the buffer
pub fn write(&mut self, buf: &[W]) -> Result<(usize, usize), Error> {
self.ringbuf
.write(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()), buf)
}
/// Write an exact number of elements to the ringbuffer.
pub async fn write_exact(&mut self, buffer: &[W]) -> Result<usize, Error> {
self.ringbuf
.write_exact(&mut DmaCtrlImpl(self.channel.reborrow(), W::size()), buffer)
.await
}
/// The capacity of the ringbuffer
pub const fn cap(&self) -> usize {
self.ringbuf.cap()
}
/// Set the waker for the DMA controller.
pub fn set_waker(&mut self, waker: &Waker) {
DmaCtrlImpl(self.channel.reborrow(), W::size()).set_waker(waker);
}
/// Return whether this transfer is still running.
pub fn is_running(&mut self) -> bool {
self.channel.is_running()
}
}
impl<'a, W: Word> Drop for WritableRingBuffer<'a, W> {
fn drop(&mut self) {
self.request_stop();
while self.is_running() {}
// "Subsequent reads and writes cannot be moved ahead of preceding reads."
fence(Ordering::SeqCst);
}
}

View File

@ -7,7 +7,6 @@ use core::marker::PhantomData;
use embassy_hal_internal::PeripheralType;
pub use crate::dma::word;
#[cfg(not(gpdma))]
use crate::dma::{ringbuffer, Channel, ReadableRingBuffer, Request, TransferOptions, WritableRingBuffer};
use crate::gpio::{AfType, AnyPin, OutputType, Pull, SealedPin as _, Speed};
use crate::pac::sai::{vals, Sai as Regs};
@ -26,7 +25,6 @@ pub enum Error {
Overrun,
}
#[cfg(not(gpdma))]
impl From<ringbuffer::Error> for Error {
fn from(#[allow(unused)] err: ringbuffer::Error) -> Self {
#[cfg(feature = "defmt")]
@ -598,7 +596,7 @@ pub struct Config {
pub frame_sync_polarity: FrameSyncPolarity,
pub frame_sync_active_level_length: word::U7,
pub frame_sync_definition: FrameSyncDefinition,
pub frame_length: u8,
pub frame_length: u16,
pub clock_strobe: ClockStrobe,
pub output_drive: OutputDrive,
pub master_clock_divider: MasterClockDivider,
@ -650,7 +648,6 @@ impl Config {
}
}
#[cfg(not(gpdma))]
enum RingBuffer<'d, W: word::Word> {
Writable(WritableRingBuffer<'d, W>),
Readable(ReadableRingBuffer<'d, W>),
@ -677,7 +674,6 @@ fn get_af_types(mode: Mode, tx_rx: TxRx) -> (AfType, AfType) {
)
}
#[cfg(not(gpdma))]
fn get_ring_buffer<'d, T: Instance, W: word::Word>(
dma: Peri<'d, impl Channel>,
dma_buf: &'d mut [W],
@ -748,14 +744,10 @@ pub struct Sai<'d, T: Instance, W: word::Word> {
fs: Option<Peri<'d, AnyPin>>,
sck: Option<Peri<'d, AnyPin>>,
mclk: Option<Peri<'d, AnyPin>>,
#[cfg(gpdma)]
ring_buffer: PhantomData<W>,
#[cfg(not(gpdma))]
ring_buffer: RingBuffer<'d, W>,
sub_block: WhichSubBlock,
}
#[cfg(not(gpdma))]
impl<'d, T: Instance, W: word::Word> Sai<'d, T, W> {
/// Create a new SAI driver in asynchronous mode with MCLK.
///
@ -919,12 +911,16 @@ impl<'d, T: Instance, W: word::Word> Sai<'d, T, W> {
w.set_tris(config.is_high_impedance_on_inactive_slot);
});
if config.frame_length > 256 {
panic!("Frame length must be <= 256");
}
ch.frcr().modify(|w| {
w.set_fsoff(config.frame_sync_offset.fsoff());
w.set_fspol(config.frame_sync_polarity.fspol());
w.set_fsdef(config.frame_sync_definition.fsdef());
w.set_fsall(config.frame_sync_active_level_length.0 as u8 - 1);
w.set_frl(config.frame_length - 1);
w.set_frl((config.frame_length - 1) as u8);
});
ch.slotr().modify(|w| {