Merge pull request #3023 from liarokapisv/i2s-ring-buffered

Revise I2S interface to ring-buffered.
This commit is contained in:
Ulf Lilleengen 2024-10-17 07:08:11 +00:00 committed by GitHub
commit 0225c2a0f2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 278 additions and 85 deletions

View File

@ -1,12 +1,13 @@
//! Inter-IC Sound (I2S)
use embassy_futures::join::join;
use embassy_hal_internal::into_ref;
use stm32_metapac::spi::vals;
use crate::dma::ChannelAndRequest;
use crate::dma::{ringbuffer, ChannelAndRequest, ReadableRingBuffer, TransferOptions, WritableRingBuffer};
use crate::gpio::{AfType, AnyPin, OutputType, SealedPin, Speed};
use crate::mode::Async;
use crate::pac::spi::vals;
use crate::spi::{Config as SpiConfig, *};
use crate::spi::{Config as SpiConfig, RegsExt as _, *};
use crate::time::Hertz;
use crate::{Peripheral, PeripheralRef};
@ -19,6 +20,19 @@ pub enum Mode {
Slave,
}
/// I2S function
#[derive(Copy, Clone)]
#[allow(dead_code)]
enum Function {
/// Transmit audio data
Transmit,
/// Receive audio data
Receive,
#[cfg(spi_v3)]
/// Transmit and Receive audio data
FullDuplex,
}
/// I2C standard
#[derive(Copy, Clone)]
pub enum Standard {
@ -34,6 +48,30 @@ pub enum Standard {
PcmShortSync,
}
/// SAI error
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// `write` called on a SAI in receive mode.
NotATransmitter,
/// `read` called on a SAI in transmit mode.
NotAReceiver,
/// Overrun
Overrun,
}
impl From<ringbuffer::Error> for Error {
fn from(#[allow(unused)] err: ringbuffer::Error) -> Self {
#[cfg(feature = "defmt")]
{
if err == ringbuffer::Error::DmaUnsynced {
defmt::error!("Ringbuffer broken invariants detected!");
}
}
Self::Overrun
}
}
impl Standard {
#[cfg(any(spi_v1, spi_v3, spi_f1))]
const fn i2sstd(&self) -> vals::I2sstd {
@ -142,31 +180,62 @@ impl Default for Config {
}
}
/// I2S driver writer. Useful for moving write functionality across tasks.
pub struct Writer<'s, 'd, W: Word>(&'s mut WritableRingBuffer<'d, W>);
impl<'s, 'd, W: Word> Writer<'s, 'd, W> {
/// Write data to the I2S ringbuffer.
/// This appends the data to the buffer and returns immediately. The data will be transmitted in the background.
/// If thfres no space in the buffer, this waits until there is.
pub async fn write(&mut self, data: &[W]) -> Result<(), Error> {
self.0.write_exact(data).await?;
Ok(())
}
/// Reset the ring buffer to its initial state.
/// Can be used to recover from overrun.
/// The ringbuffer will always auto-reset on Overrun in any case.
pub fn reset(&mut self) {
self.0.clear();
}
}
/// I2S driver reader. Useful for moving read functionality across tasks.
pub struct Reader<'s, 'd, W: Word>(&'s mut ReadableRingBuffer<'d, W>);
impl<'s, 'd, W: Word> Reader<'s, 'd, W> {
/// Read data from the I2S ringbuffer.
/// SAI is always receiving data in the background. This function pops already-received data from the buffer.
/// If theres less than data.len() data in the buffer, this waits until there is.
pub async fn read(&mut self, data: &mut [W]) -> Result<(), Error> {
self.0.read_exact(data).await?;
Ok(())
}
/// Reset the ring buffer to its initial state.
/// Can be used to prevent overrun.
/// The ringbuffer will always auto-reset on Overrun in any case.
pub fn reset(&mut self) {
self.0.clear();
}
}
/// I2S driver.
pub struct I2S<'d> {
_peri: Spi<'d, Async>,
pub struct I2S<'d, W: Word> {
#[allow(dead_code)]
mode: Mode,
spi: Spi<'d, Async>,
txsd: Option<PeripheralRef<'d, AnyPin>>,
rxsd: Option<PeripheralRef<'d, AnyPin>>,
ws: Option<PeripheralRef<'d, AnyPin>>,
ck: Option<PeripheralRef<'d, AnyPin>>,
mck: Option<PeripheralRef<'d, AnyPin>>,
tx_ring_buffer: Option<WritableRingBuffer<'d, W>>,
rx_ring_buffer: Option<ReadableRingBuffer<'d, W>>,
}
/// I2S function
#[derive(Copy, Clone)]
#[allow(dead_code)]
enum Function {
/// Transmit audio data
Transmit,
/// Receive audio data
Receive,
#[cfg(spi_v3)]
/// Transmit and Receive audio data
FullDuplex,
}
impl<'d> I2S<'d> {
/// Create a transmitter driver
impl<'d, W: Word> I2S<'d, W> {
/// Create a transmitter driver.
pub fn new_txonly<T: Instance>(
peri: impl Peripheral<P = T> + 'd,
sd: impl Peripheral<P = impl MosiPin<T>> + 'd,
@ -174,18 +243,18 @@ impl<'d> I2S<'d> {
ck: impl Peripheral<P = impl CkPin<T>> + 'd,
mck: impl Peripheral<P = impl MckPin<T>> + 'd,
txdma: impl Peripheral<P = impl TxDma<T>> + 'd,
txdma_buf: &'d mut [W],
freq: Hertz,
config: Config,
) -> Self {
into_ref!(sd);
Self::new_inner(
peri,
new_pin!(sd, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
None,
ws,
ck,
mck,
new_dma!(txdma),
new_pin!(mck, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
new_dma!(txdma).map(|d| (d, txdma_buf)),
None,
freq,
config,
@ -193,42 +262,61 @@ impl<'d> I2S<'d> {
)
}
/// Create a receiver driver
/// Create a transmitter driver without a master clock pin.
pub fn new_txonly_nomck<T: Instance>(
peri: impl Peripheral<P = T> + 'd,
sd: impl Peripheral<P = impl MosiPin<T>> + 'd,
ws: impl Peripheral<P = impl WsPin<T>> + 'd,
ck: impl Peripheral<P = impl CkPin<T>> + 'd,
txdma: impl Peripheral<P = impl TxDma<T>> + 'd,
txdma_buf: &'d mut [W],
freq: Hertz,
config: Config,
) -> Self {
Self::new_inner(
peri,
new_pin!(sd, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
None,
ws,
ck,
None,
new_dma!(txdma).map(|d| (d, txdma_buf)),
None,
freq,
config,
Function::Transmit,
)
}
/// Create a receiver driver.
pub fn new_rxonly<T: Instance>(
peri: impl Peripheral<P = T> + 'd,
sd: impl Peripheral<P = impl MisoPin<T>> + 'd,
ws: impl Peripheral<P = impl WsPin<T>> + 'd,
ck: impl Peripheral<P = impl CkPin<T>> + 'd,
mck: impl Peripheral<P = impl MckPin<T>> + 'd,
#[cfg(not(spi_v3))] txdma: impl Peripheral<P = impl TxDma<T>> + 'd,
rxdma: impl Peripheral<P = impl RxDma<T>> + 'd,
rxdma_buf: &'d mut [W],
freq: Hertz,
config: Config,
) -> Self {
into_ref!(sd);
Self::new_inner(
peri,
None,
new_pin!(sd, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
ws,
ck,
mck,
#[cfg(not(spi_v3))]
new_dma!(txdma),
#[cfg(spi_v3)]
new_pin!(mck, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
None,
new_dma!(rxdma),
new_dma!(rxdma).map(|d| (d, rxdma_buf)),
freq,
config,
#[cfg(not(spi_v3))]
Function::Transmit,
#[cfg(spi_v3)]
Function::Receive,
)
}
#[cfg(spi_v3)]
/// Create a full duplex transmitter driver
/// Create a full duplex driver.
pub fn new_full_duplex<T: Instance>(
peri: impl Peripheral<P = T> + 'd,
txsd: impl Peripheral<P = impl MosiPin<T>> + 'd,
@ -237,44 +325,144 @@ impl<'d> I2S<'d> {
ck: impl Peripheral<P = impl CkPin<T>> + 'd,
mck: impl Peripheral<P = impl MckPin<T>> + 'd,
txdma: impl Peripheral<P = impl TxDma<T>> + 'd,
txdma_buf: &'d mut [W],
rxdma: impl Peripheral<P = impl RxDma<T>> + 'd,
rxdma_buf: &'d mut [W],
freq: Hertz,
config: Config,
) -> Self {
into_ref!(txsd, rxsd);
Self::new_inner(
peri,
new_pin!(txsd, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
new_pin!(rxsd, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
ws,
ck,
mck,
new_dma!(txdma),
new_dma!(rxdma),
new_pin!(mck, AfType::output(OutputType::PushPull, Speed::VeryHigh)),
new_dma!(txdma).map(|d| (d, txdma_buf)),
new_dma!(rxdma).map(|d| (d, rxdma_buf)),
freq,
config,
Function::FullDuplex,
)
}
/// Write audio data.
pub async fn read<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error> {
self._peri.read(data).await
/// Start I2S driver.
pub fn start(&mut self) {
self.spi.info.regs.cr1().modify(|w| {
w.set_spe(false);
});
self.spi.set_word_size(W::CONFIG);
if let Some(tx_ring_buffer) = &mut self.tx_ring_buffer {
tx_ring_buffer.start();
set_txdmaen(self.spi.info.regs, true);
}
if let Some(rx_ring_buffer) = &mut self.rx_ring_buffer {
rx_ring_buffer.start();
// SPIv3 clears rxfifo on SPE=0
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
flush_rx_fifo(self.spi.info.regs);
set_rxdmaen(self.spi.info.regs, true);
}
self.spi.info.regs.cr1().modify(|w| {
w.set_spe(true);
});
#[cfg(any(spi_v3, spi_v4, spi_v5))]
self.spi.info.regs.cr1().modify(|w| {
w.set_cstart(true);
});
}
/// Write audio data.
pub async fn write<W: Word>(&mut self, data: &[W]) -> Result<(), Error> {
self._peri.write(data).await
/// Reset the ring buffer to its initial state.
/// Can be used to recover from overrun.
pub fn clear(&mut self) {
if let Some(rx_ring_buffer) = &mut self.rx_ring_buffer {
rx_ring_buffer.clear();
}
if let Some(tx_ring_buffer) = &mut self.tx_ring_buffer {
tx_ring_buffer.clear();
}
}
/// Transfer audio data.
pub async fn transfer<W: Word>(&mut self, read: &mut [W], write: &[W]) -> Result<(), Error> {
self._peri.transfer(read, write).await
/// Stop I2S driver.
pub async fn stop(&mut self) {
let regs = self.spi.info.regs;
let tx_f = async {
if let Some(tx_ring_buffer) = &mut self.tx_ring_buffer {
tx_ring_buffer.stop().await;
set_txdmaen(regs, false);
}
};
let rx_f = async {
if let Some(rx_ring_buffer) = &mut self.rx_ring_buffer {
rx_ring_buffer.stop().await;
set_rxdmaen(regs, false);
}
};
join(rx_f, tx_f).await;
#[cfg(any(spi_v3, spi_v4, spi_v5))]
{
if let Mode::Master = self.mode {
regs.cr1().modify(|w| {
w.set_csusp(true);
});
while regs.cr1().read().cstart() {}
}
}
regs.cr1().modify(|w| {
w.set_spe(false);
});
self.clear();
}
/// Transfer audio data in place.
pub async fn transfer_in_place<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error> {
self._peri.transfer_in_place(data).await
/// Split the driver into a Reader/Writer pair.
/// Useful for splitting the reader/writer functionality across tasks or
/// for calling the read/write methods in parallel.
pub fn split<'s>(&'s mut self) -> Result<(Reader<'s, 'd, W>, Writer<'s, 'd, W>), Error> {
match (&mut self.rx_ring_buffer, &mut self.tx_ring_buffer) {
(None, _) => Err(Error::NotAReceiver),
(_, None) => Err(Error::NotATransmitter),
(Some(rx_ring), Some(tx_ring)) => Ok((Reader(rx_ring), Writer(tx_ring))),
}
}
/// Read data from the I2S ringbuffer.
/// SAI is always receiving data in the background. This function pops already-received data from the buffer.
/// If theres less than data.len() data in the buffer, this waits until there is.
pub async fn read(&mut self, data: &mut [W]) -> Result<(), Error> {
match &mut self.rx_ring_buffer {
Some(ring) => Reader(ring).read(data).await,
_ => Err(Error::NotAReceiver),
}
}
/// Write data to the I2S ringbuffer.
/// This appends the data to the buffer and returns immediately. The data will be transmitted in the background.
/// If thfres no space in the buffer, this waits until there is.
pub async fn write(&mut self, data: &[W]) -> Result<(), Error> {
match &mut self.tx_ring_buffer {
Some(ring) => Writer(ring).write(data).await,
_ => Err(Error::NotATransmitter),
}
}
/// Write data directly to the raw I2S ringbuffer.
/// This can be used to fill the buffer before starting the DMA transfer.
pub async fn write_immediate(&mut self, data: &mut [W]) -> Result<(usize, usize), Error> {
match &mut self.tx_ring_buffer {
Some(ring) => Ok(ring.write_immediate(data)?),
_ => return Err(Error::NotATransmitter),
}
}
fn new_inner<T: Instance>(
@ -283,23 +471,23 @@ impl<'d> I2S<'d> {
rxsd: Option<PeripheralRef<'d, AnyPin>>,
ws: impl Peripheral<P = impl WsPin<T>> + 'd,
ck: impl Peripheral<P = impl CkPin<T>> + 'd,
mck: impl Peripheral<P = impl MckPin<T>> + 'd,
txdma: Option<ChannelAndRequest<'d>>,
rxdma: Option<ChannelAndRequest<'d>>,
mck: Option<PeripheralRef<'d, AnyPin>>,
txdma: Option<(ChannelAndRequest<'d>, &'d mut [W])>,
rxdma: Option<(ChannelAndRequest<'d>, &'d mut [W])>,
freq: Hertz,
config: Config,
function: Function,
) -> Self {
into_ref!(ws, ck, mck);
into_ref!(ws, ck);
ws.set_as_af(ws.af_num(), AfType::output(OutputType::PushPull, Speed::VeryHigh));
ck.set_as_af(ck.af_num(), AfType::output(OutputType::PushPull, Speed::VeryHigh));
mck.set_as_af(mck.af_num(), AfType::output(OutputType::PushPull, Speed::VeryHigh));
let mut spi_cfg = SpiConfig::default();
spi_cfg.frequency = freq;
let spi = Spi::new_internal(peri, txdma, rxdma, spi_cfg);
let spi = Spi::new_internal(peri, None, None, {
let mut config = SpiConfig::default();
config.frequency = freq;
config
});
let regs = T::info().regs;
@ -390,22 +578,29 @@ impl<'d> I2S<'d> {
w.set_i2se(true);
});
#[cfg(spi_v3)]
regs.cr1().modify(|w| w.set_spe(true));
}
let mut opts = TransferOptions::default();
opts.half_transfer_ir = true;
Self {
_peri: spi,
txsd: txsd.map(|w| w.map_into()),
rxsd: rxsd.map(|w| w.map_into()),
ws: Some(ws.map_into()),
ck: Some(ck.map_into()),
mck: Some(mck.map_into()),
Self {
mode: config.mode,
spi,
txsd: txsd.map(|w| w.map_into()),
rxsd: rxsd.map(|w| w.map_into()),
ws: Some(ws.map_into()),
ck: Some(ck.map_into()),
mck: mck.map(|w| w.map_into()),
tx_ring_buffer: txdma.map(|(ch, buf)| unsafe {
WritableRingBuffer::new(ch.channel, ch.request, regs.tx_ptr(), buf, opts)
}),
rx_ring_buffer: rxdma.map(|(ch, buf)| unsafe {
ReadableRingBuffer::new(ch.channel, ch.request, regs.rx_ptr(), buf, opts)
}),
}
}
}
}
impl<'d> Drop for I2S<'d> {
impl<'d, W: Word> Drop for I2S<'d, W> {
fn drop(&mut self) {
self.txsd.as_ref().map(|x| x.set_as_disconnected());
self.rxsd.as_ref().map(|x| x.set_as_disconnected());

View File

@ -311,8 +311,7 @@ impl<'d, M: PeriMode> Spi<'d, M> {
}
}
/// Set SPI word size. Disables SPI if needed, you have to enable it back yourself.
fn set_word_size(&mut self, word_size: word_impl::Config) {
pub(crate) fn set_word_size(&mut self, word_size: word_impl::Config) {
if self.current_word_size == word_size {
return;
}
@ -895,7 +894,7 @@ fn compute_frequency(kernel_clock: Hertz, br: Br) -> Hertz {
kernel_clock / div
}
trait RegsExt {
pub(crate) trait RegsExt {
fn tx_ptr<W>(&self) -> *mut W;
fn rx_ptr<W>(&self) -> *mut W;
}
@ -983,7 +982,7 @@ fn spin_until_rx_ready(regs: Regs) -> Result<(), Error> {
}
}
fn flush_rx_fifo(regs: Regs) {
pub(crate) fn flush_rx_fifo(regs: Regs) {
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
while regs.sr().read().rxne() {
#[cfg(not(spi_v2))]
@ -997,7 +996,7 @@ fn flush_rx_fifo(regs: Regs) {
}
}
fn set_txdmaen(regs: Regs, val: bool) {
pub(crate) fn set_txdmaen(regs: Regs, val: bool) {
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
regs.cr2().modify(|reg| {
reg.set_txdmaen(val);
@ -1008,7 +1007,7 @@ fn set_txdmaen(regs: Regs, val: bool) {
});
}
fn set_rxdmaen(regs: Regs, val: bool) {
pub(crate) fn set_rxdmaen(regs: Regs, val: bool) {
#[cfg(not(any(spi_v3, spi_v4, spi_v5)))]
regs.cr2().modify(|reg| {
reg.set_rxdmaen(val);
@ -1169,7 +1168,7 @@ impl<'d, W: Word> embedded_hal_async::spi::SpiBus<W> for Spi<'d, Async> {
}
}
trait SealedWord {
pub(crate) trait SealedWord {
const CONFIG: word_impl::Config;
}

View File

@ -1,13 +1,10 @@
#![no_std]
#![no_main]
use core::fmt::Write;
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2s::{Config, I2S};
use embassy_stm32::time::Hertz;
use heapless::String;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
@ -15,6 +12,8 @@ async fn main(_spawner: Spawner) {
let p = embassy_stm32::init(Default::default());
info!("Hello World!");
let mut dma_buffer = [0x00_u16; 128];
let mut i2s = I2S::new_txonly(
p.SPI2,
p.PC3, // sd
@ -22,13 +21,13 @@ async fn main(_spawner: Spawner) {
p.PB10, // ck
p.PC6, // mck
p.DMA1_CH4,
&mut dma_buffer,
Hertz(1_000_000),
Config::default(),
);
for n in 0u32.. {
let mut write: String<128> = String::new();
core::write!(&mut write, "Hello DMA World {}!\r\n", n).unwrap();
i2s.write(&mut write.as_bytes()).await.ok();
for i in 0_u16.. {
i2s.write(&mut [i * 2; 64]).await.ok();
i2s.write(&mut [i * 2 + 1; 64]).await.ok();
}
}