embassy/embassy-rp/src/multicore.rs

336 lines
10 KiB
Rust
Raw Normal View History

2022-12-13 08:45:11 +00:00
//! Multicore support
2022-12-10 07:26:35 +00:00
//!
//! This module handles setup of the 2nd cpu core on the rp2040, which we refer to as core1.
//! It provides functionality for setting up the stack, and starting core1.
//!
//! The entrypoint for core1 can be any function that never returns, including closures.
2022-12-10 11:57:45 +00:00
//!
//! Enable the `critical-section-impl` feature in embassy-rp when sharing data across cores using
//! the `embassy-sync` primitives and `CriticalSectionRawMutex`.
2022-12-13 08:45:11 +00:00
//!
//! # Usage
2023-05-29 19:30:28 +00:00
//!
2022-12-13 08:45:11 +00:00
//! ```no_run
2023-05-29 19:30:28 +00:00
//! # #![feature(type_alias_impl_trait)]
//! use embassy_rp::multicore::Stack;
//! use static_cell::StaticCell;
//! use embassy_executor::Executor;
//!
2022-12-13 08:45:11 +00:00
//! static mut CORE1_STACK: Stack<4096> = Stack::new();
//! static EXECUTOR0: StaticCell<Executor> = StaticCell::new();
//! static EXECUTOR1: StaticCell<Executor> = StaticCell::new();
//!
2023-05-29 19:30:28 +00:00
//! # // workaround weird error: `main` function not found in crate `rust_out`
//! # let _ = ();
//!
//! #[embassy_executor::task]
//! async fn core0_task() {
//! // ...
//! }
//!
//! #[embassy_executor::task]
//! async fn core1_task() {
//! // ...
//! }
//!
2022-12-13 08:45:11 +00:00
//! #[cortex_m_rt::entry]
//! fn main() -> ! {
//! let p = embassy_rp::init(Default::default());
//!
2023-05-29 19:30:28 +00:00
//! embassy_rp::multicore::spawn_core1(p.CORE1, unsafe { &mut CORE1_STACK }, move || {
2022-12-13 08:45:11 +00:00
//! let executor1 = EXECUTOR1.init(Executor::new());
2023-05-29 19:30:28 +00:00
//! executor1.run(|spawner| spawner.spawn(core1_task()).unwrap());
2022-12-13 08:45:11 +00:00
//! });
//!
//! let executor0 = EXECUTOR0.init(Executor::new());
2023-05-29 19:30:28 +00:00
//! executor0.run(|spawner| spawner.spawn(core0_task()).unwrap())
2022-12-13 08:45:11 +00:00
//! }
//! ```
2022-12-10 07:26:35 +00:00
use core::mem::ManuallyDrop;
use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
2023-06-01 00:22:46 +00:00
use crate::interrupt::Interrupt;
2022-12-13 12:49:51 +00:00
use crate::peripherals::CORE1;
use crate::{gpio, interrupt, pac};
const PAUSE_TOKEN: u32 = 0xDEADBEEF;
const RESUME_TOKEN: u32 = !0xDEADBEEF;
static IS_CORE1_INIT: AtomicBool = AtomicBool::new(false);
2022-12-10 07:26:35 +00:00
#[inline(always)]
fn install_stack_guard(stack_bottom: *mut usize) {
let core = unsafe { cortex_m::Peripherals::steal() };
// Trap if MPU is already configured
if core.MPU.ctrl.read() != 0 {
cortex_m::asm::udf();
}
// The minimum we can protect is 32 bytes on a 32 byte boundary, so round up which will
// just shorten the valid stack range a tad.
let addr = (stack_bottom as u32 + 31) & !31;
// Mask is 1 bit per 32 bytes of the 256 byte range... clear the bit for the segment we want
let subregion_select = 0xff ^ (1 << ((addr >> 5) & 7));
unsafe {
core.MPU.ctrl.write(5); // enable mpu with background default map
core.MPU.rbar.write((addr & !0xff) | 0x8);
core.MPU.rasr.write(
1 // enable region
| (0x7 << 1) // size 2^(7 + 1) = 256
| (subregion_select << 8)
| 0x10000000, // XN = disable instruction fetch; no other bits means no permissions
);
}
}
#[inline(always)]
fn core1_setup(stack_bottom: *mut usize) {
install_stack_guard(stack_bottom);
unsafe {
gpio::init();
}
2022-12-10 07:26:35 +00:00
}
2022-12-13 12:49:51 +00:00
/// Data type for a properly aligned stack of N bytes
2022-12-10 07:26:35 +00:00
#[repr(C, align(32))]
pub struct Stack<const SIZE: usize> {
/// Memory to be used for the stack
2022-12-13 12:49:51 +00:00
pub mem: [u8; SIZE],
2022-12-10 07:26:35 +00:00
}
impl<const SIZE: usize> Stack<SIZE> {
/// Construct a stack of length SIZE, initialized to 0
pub const fn new() -> Stack<SIZE> {
2022-12-13 12:49:51 +00:00
Stack { mem: [0_u8; SIZE] }
2022-12-10 07:26:35 +00:00
}
}
#[interrupt]
#[link_section = ".data.ram_func"]
unsafe fn SIO_IRQ_PROC1() {
let sio = pac::SIO;
// Clear IRQ
sio.fifo().st().write(|w| w.set_wof(false));
while sio.fifo().st().read().vld() {
// Pause CORE1 execution and disable interrupts
if fifo_read_wfe() == PAUSE_TOKEN {
cortex_m::interrupt::disable();
// Signal to CORE0 that execution is paused
fifo_write(PAUSE_TOKEN);
// Wait for `resume` signal from CORE0
while fifo_read_wfe() != RESUME_TOKEN {
cortex_m::asm::nop();
}
cortex_m::interrupt::enable();
// Signal to CORE0 that execution is resumed
fifo_write(RESUME_TOKEN);
}
}
2022-12-10 07:26:35 +00:00
}
2022-12-13 12:49:51 +00:00
/// Spawn a function on this core
pub fn spawn_core1<F, const SIZE: usize>(_core1: CORE1, stack: &'static mut Stack<SIZE>, entry: F)
where
F: FnOnce() -> bad::Never + Send + 'static,
{
// The first two ignored `u64` parameters are there to take up all of the registers,
// which means that the rest of the arguments are taken from the stack,
// where we're able to put them from core 0.
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
_: u64,
_: u64,
entry: *mut ManuallyDrop<F>,
2022-12-13 12:49:51 +00:00
stack_bottom: *mut usize,
) -> ! {
core1_setup(stack_bottom);
let entry = unsafe { ManuallyDrop::take(&mut *entry) };
// make sure the preceding read doesn't get reordered past the following fifo write
compiler_fence(Ordering::SeqCst);
2022-12-13 12:49:51 +00:00
// Signal that it's safe for core 0 to get rid of the original value now.
fifo_write(1);
IS_CORE1_INIT.store(true, Ordering::Release);
// Enable fifo interrupt on CORE1 for `pause` functionality.
2023-06-01 00:22:46 +00:00
unsafe { interrupt::SIO_IRQ_PROC1::enable() };
2022-12-13 12:49:51 +00:00
entry()
}
2022-12-10 07:26:35 +00:00
2022-12-13 12:49:51 +00:00
// Reset the core
unsafe {
let psm = pac::PSM;
psm.frce_off().modify(|w| w.set_proc1(true));
while !psm.frce_off().read().proc1() {
cortex_m::asm::nop();
2022-12-10 07:26:35 +00:00
}
2022-12-13 12:49:51 +00:00
psm.frce_off().modify(|w| w.set_proc1(false));
}
2022-12-10 07:26:35 +00:00
// The ARM AAPCS ABI requires 8-byte stack alignment.
// #[align] on `struct Stack` ensures the bottom is aligned, but the top could still be
// unaligned if the user chooses a stack size that's not multiple of 8.
// So, we round down to the next multiple of 8.
let stack_words = stack.mem.len() / 8 * 2;
let mem = unsafe { core::slice::from_raw_parts_mut(stack.mem.as_mut_ptr() as *mut usize, stack_words) };
2022-12-10 07:26:35 +00:00
2022-12-13 12:49:51 +00:00
// Set up the stack
let mut stack_ptr = unsafe { mem.as_mut_ptr().add(mem.len()) };
2022-12-13 12:49:51 +00:00
// We don't want to drop this, since it's getting moved to the other core.
let mut entry = ManuallyDrop::new(entry);
2022-12-13 12:49:51 +00:00
// Push the arguments to `core1_startup` onto the stack.
unsafe {
// Push `stack_bottom`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<*mut usize>().write(mem.as_mut_ptr());
2022-12-13 12:49:51 +00:00
// Push `entry`.
stack_ptr = stack_ptr.sub(1);
stack_ptr.cast::<*mut ManuallyDrop<F>>().write(&mut entry);
2022-12-13 12:49:51 +00:00
}
2022-12-13 12:49:51 +00:00
// Make sure the compiler does not reorder the stack writes after to after the
// below FIFO writes, which would result in them not being seen by the second
// core.
//
// From the compiler perspective, this doesn't guarantee that the second core
// actually sees those writes. However, we know that the RP2040 doesn't have
// memory caches, and writes happen in-order.
compiler_fence(Ordering::Release);
let p = unsafe { cortex_m::Peripherals::steal() };
let vector_table = p.SCB.vtor.read();
// After reset, core 1 is waiting to receive commands over FIFO.
// This is the sequence to have it jump to some code.
let cmd_seq = [
0,
0,
1,
vector_table as usize,
stack_ptr as usize,
core1_startup::<F> as usize,
];
let mut seq = 0;
let mut fails = 0;
loop {
let cmd = cmd_seq[seq] as u32;
if cmd == 0 {
fifo_drain();
cortex_m::asm::sev();
}
fifo_write(cmd);
let response = fifo_read();
if cmd == response {
seq += 1;
} else {
seq = 0;
fails += 1;
if fails > 16 {
// The second core isn't responding, and isn't going to take the entrypoint
panic!("CORE1 not responding");
}
}
2022-12-13 12:49:51 +00:00
if seq >= cmd_seq.len() {
break;
}
}
2022-12-13 12:49:51 +00:00
// Wait until the other core has copied `entry` before returning.
fifo_read();
}
2022-12-10 07:26:35 +00:00
/// Pause execution on CORE1.
pub fn pause_core1() {
if IS_CORE1_INIT.load(Ordering::Acquire) {
fifo_write(PAUSE_TOKEN);
// Wait for CORE1 to signal it has paused execution.
while fifo_read() != PAUSE_TOKEN {}
}
}
2022-12-10 07:26:35 +00:00
/// Resume CORE1 execution.
pub fn resume_core1() {
if IS_CORE1_INIT.load(Ordering::Acquire) {
fifo_write(RESUME_TOKEN);
// Wait for CORE1 to signal it has resumed execution.
while fifo_read() != RESUME_TOKEN {}
}
}
2022-12-10 07:26:35 +00:00
// Push a value to the inter-core FIFO, block until space is available
#[inline(always)]
fn fifo_write(value: u32) {
unsafe {
let sio = pac::SIO;
// Wait for the FIFO to have enough space
while !sio.fifo().st().read().rdy() {
cortex_m::asm::nop();
}
sio.fifo().wr().write_value(value);
}
// Fire off an event to the other core.
// This is required as the other core may be `wfe` (waiting for event)
cortex_m::asm::sev();
}
2022-12-10 07:26:35 +00:00
// Pop a value from inter-core FIFO, block until available
#[inline(always)]
fn fifo_read() -> u32 {
unsafe {
let sio = pac::SIO;
// Wait until FIFO has data
while !sio.fifo().st().read().vld() {
cortex_m::asm::nop();
}
sio.fifo().rd().read()
}
}
2022-12-10 07:26:35 +00:00
// Pop a value from inter-core FIFO, `wfe` until available
#[inline(always)]
fn fifo_read_wfe() -> u32 {
unsafe {
let sio = pac::SIO;
// Wait until FIFO has data
while !sio.fifo().st().read().vld() {
cortex_m::asm::wfe();
}
sio.fifo().rd().read()
}
}
2022-12-10 07:26:35 +00:00
// Drain inter-core FIFO
#[inline(always)]
fn fifo_drain() {
unsafe {
let sio = pac::SIO;
while sio.fifo().st().read().vld() {
let _ = sio.fifo().rd().read();
2022-12-10 07:26:35 +00:00
}
}
}
// https://github.com/nvzqz/bad-rs/blob/master/src/never.rs
mod bad {
pub(crate) type Never = <F as HasOutput>::Output;
pub trait HasOutput {
type Output;
}
impl<O> HasOutput for fn() -> O {
type Output = O;
}
type F = fn() -> !;
}