mirror of
https://github.com/PAMGuard/PAMGuard.git
synced 2024-11-21 22:52:22 +00:00
DelphinID training script
This commit is contained in:
parent
f9b13da1d1
commit
7df04d58a2
@ -65,7 +65,9 @@ public class DelphinIDTest {
|
||||
String whistleContourPath = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_contours.mat";
|
||||
|
||||
//the path to the model
|
||||
String modelPath = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_model_2/whistle_4s_415.zip";
|
||||
// String modelPath = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_model_2/whistle_4s_415.zip";
|
||||
String modelPath = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_model_3/whistle_4s_415_f5.zip";
|
||||
|
||||
|
||||
//the path to the model
|
||||
String matImageSave = "C:/Users/Jamie Macaulay/MATLAB Drive/MATLAB/PAMGUARD/deep_learning/delphinID/whistleimages.mat";
|
||||
|
@ -224,28 +224,34 @@ public class DelphinIDUtils {
|
||||
|
||||
//segment the whistle detections
|
||||
ArrayList<SegmenterDetectionGroup> segments = DelphinIDUtils.segmentWhsitleData(whistles, whistles.get(0).getTimeMilliseconds(), segLen, segHop);
|
||||
|
||||
|
||||
float[][][] images = worker.dataUnits2ModelInput(segments, (float) sampleRate, 0);
|
||||
|
||||
float[][] image;
|
||||
BufferedImage bfImage;
|
||||
double density;
|
||||
for (int k=0; k<images.length; k++) {
|
||||
|
||||
if (segments.get(k).getSubDetectionsCount()<1) {
|
||||
continue;
|
||||
}
|
||||
image = images[k];
|
||||
|
||||
bfImage = new BufferedImage(image.length, image[0].length, BufferedImage.TYPE_INT_RGB);
|
||||
|
||||
// System.out.println("Max of image: " + PamArrayUtils.minmax(image)[1]);
|
||||
bfImage = new BufferedImage(image[0].length, image.length, BufferedImage.TYPE_INT_RGB);
|
||||
|
||||
// System.out.println("Max of image: " + PamArrayUtils.minmax(image)[1]);
|
||||
|
||||
for(int i = 0; i < image.length; i++) {
|
||||
for(int j = 0; j < image[0].length; j++) {
|
||||
Color myRGB = new Color(image[i][j], image[i][j], image[i][j]);
|
||||
int rgb = myRGB.getRGB();
|
||||
bfImage.setRGB(i, j, rgb);
|
||||
bfImage.setRGB(j,i, rgb);
|
||||
}
|
||||
}
|
||||
|
||||
density = getDensity(segments.get(k));
|
||||
//now save the image
|
||||
String outputPath = outName + "_" + k + ".png";
|
||||
String outputPath = String.format("%s_d%.2f_%d.png", outName, density, k);
|
||||
|
||||
File outputfile = new File(outputPath);
|
||||
|
||||
@ -255,30 +261,51 @@ public class DelphinIDUtils {
|
||||
// TODO Auto-generated catch block
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the density of whistles for a segmenter group in the absence of a known fft length and hop.
|
||||
* @param group - the group
|
||||
* @return
|
||||
*/
|
||||
private static double getDensity(SegmenterDetectionGroup group) {
|
||||
//number of whistle bins/number of time bins
|
||||
ArrayList<double[][]> contour = Whistles2Image.whistContours2Points(group);
|
||||
|
||||
//time bin length from the first contour
|
||||
double[] times = new double[contour.get(0).length-1];
|
||||
for (int i=0; i<times.length; i++) {
|
||||
times[i]=1000.*(contour.get(0)[i+1][0] - contour.get(0)[i][0]);
|
||||
}
|
||||
|
||||
double timebinMillis = PamArrayUtils.mean(times);
|
||||
|
||||
double nBins = group.getSegmentDuration()/timebinMillis;
|
||||
|
||||
double nwhistleBins = 0;
|
||||
for (int i=0; i<contour.size(); i++) {
|
||||
nwhistleBins+=contour.get(i).length;
|
||||
}
|
||||
|
||||
// System.out.println("nwhistleBins: " +nwhistleBins + "nBins: " + nBins + " timebinMillis: " + timebinMillis);
|
||||
|
||||
return nwhistleBins/nBins;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
|
||||
//the whsitle contours as csv files.
|
||||
String whistlefolder = "/Users/au671271/Library/CloudStorage/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD";
|
||||
|
||||
//the image folder to save to.
|
||||
String imageFolder = "/Users/au671271/Library/CloudStorage/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD_Images";
|
||||
|
||||
//the path to the model
|
||||
String modelPath = "/Users/au671271/Library/CloudStorage/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_model_2/whistle_4s_415.zip";
|
||||
|
||||
//prepare the model - this loads the zip file and loads the correct transforms.
|
||||
DelphinIDWorkerTest model;
|
||||
|
||||
model = DelphinIDUtils.prepDelphinIDModel(modelPath);
|
||||
/**
|
||||
* Generate training images for DelphinID
|
||||
* @param modelPath
|
||||
* @param whistlefolder
|
||||
* @param imageFolder
|
||||
* @param lineWidth - the line width in pixels to use
|
||||
*/
|
||||
private static void generateTrainingData(String modelPath, String whistlefolder, String imageFolder, double lineWidth) {
|
||||
DelphinIDWorkerTest model = DelphinIDUtils.prepDelphinIDModel(modelPath);
|
||||
model.setEnableSoftMax(false);
|
||||
|
||||
model.getWhistleImageParams().lineWidth=lineWidth;
|
||||
|
||||
FileList filelist = new FileList();
|
||||
|
||||
File folder = new File(whistlefolder);
|
||||
@ -291,12 +318,17 @@ public class DelphinIDUtils {
|
||||
|
||||
System.out.println("Directory " + listOfFiles[i].getName());
|
||||
|
||||
File outFolder = new File(imageFolder + File.separator + listOfFiles[i].getName());
|
||||
outFolder.mkdir();//make the out folder directory
|
||||
|
||||
|
||||
try {
|
||||
|
||||
File file = new File(listOfFiles[i].getPath() + File.separator + "whistles.mat");
|
||||
|
||||
if (!file.exists()) {
|
||||
System.out.println("No whistles.mat for " + listOfFiles[i].getName());
|
||||
continue;
|
||||
}
|
||||
|
||||
Mat5File matFile = Mat5.readFromFile(file);
|
||||
|
||||
Struct whistlesStruct = matFile.getStruct("whistles");
|
||||
@ -307,11 +339,15 @@ public class DelphinIDUtils {
|
||||
|
||||
List<String> fieldNames = whistlesStruct.getFieldNames();
|
||||
|
||||
File outFolder = new File(imageFolder + File.separator + listOfFiles[i].getName());
|
||||
outFolder.mkdir();//make the out folder directory
|
||||
|
||||
Struct whistecontours;
|
||||
for (String name: fieldNames) {
|
||||
System.out.println("Generating images for recording " + name + " from " + listOfFiles[i].getName());
|
||||
System.out.println("Generating images for recording " + name + " from " + listOfFiles[i].getName() + " " + lineWidth);
|
||||
if (!name.equals("fftlen") && !name.equals("ffthop") && !name.equals("samplerate")) {
|
||||
whistecontours = whistlesStruct.get(name);
|
||||
|
||||
generateImages( whistecontours, (outFolder + File.separator + name) , model, fftLen, fftHop, sampleRate);
|
||||
}
|
||||
}
|
||||
@ -327,4 +363,32 @@ public class DelphinIDUtils {
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
|
||||
// double[] density = new double[] {0.15 - 1.5};
|
||||
|
||||
//number of whistle bins/number of time bins; either 16 or 21
|
||||
//the e contours as csv files.
|
||||
// String whistlefolder = "/Users/au671271/Library/CloudStorage/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD";
|
||||
// String whistlefolder = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD_examples/contours";
|
||||
String whistlefolder = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD/contours";
|
||||
|
||||
//the image folder to save to.
|
||||
// String imageFolder = "/Users/au671271/Library/CloudStorage/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD_Images";
|
||||
// String imageFolder = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/training/WMD_examples/images";
|
||||
String imageFolder = "C:/Users/Jamie Macaulay/Desktop/Tristan_training_images/contour_images";
|
||||
|
||||
//the path to the model
|
||||
// String modelPath = "/Users/au671271/Library/CloudStorage/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_model_2/whistle_4s_415.zip";
|
||||
String modelPath = "D:/Dropbox/PAMGuard_dev/Deep_Learning/delphinID/testencounter415/whistle_model_2/whistle_4s_415.zip";
|
||||
|
||||
double[] lineWidths = new double[] {6, 7, 10, 15, 20};
|
||||
|
||||
for (double lineWidth:lineWidths) {
|
||||
String imageFolderWidth = (imageFolder + "_"+ String.format("%d",(int)lineWidth));
|
||||
new File(imageFolderWidth).mkdir();
|
||||
generateTrainingData( modelPath, whistlefolder, imageFolderWidth, lineWidth);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -42,6 +42,15 @@ public class DelphinIDWorker extends ArchiveModelWorker {
|
||||
*/
|
||||
private Whistle2ImageParams whistleImageParams;
|
||||
|
||||
/**
|
||||
* Get the whislte to image parameters.
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
public Whistle2ImageParams getWhistleImageParams() {
|
||||
return whistleImageParams;
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public void prepModel(StandardModelParams dlParams, DLControl dlControl) {
|
||||
@ -87,10 +96,12 @@ public class DelphinIDWorker extends ArchiveModelWorker {
|
||||
freqLimits[1] = jsonObjectParams.getFloat("maxfreq");
|
||||
size[0] = jsonObjectParams.getInt("widthpix");
|
||||
size[1] = jsonObjectParams.getInt("heightpix");
|
||||
double lineWidth = jsonObjectParams.getDouble("linewidthpix");
|
||||
|
||||
Whistle2ImageParams whistle2ImageParmas = new Whistle2ImageParams();
|
||||
whistle2ImageParmas.freqLimits = freqLimits;
|
||||
whistle2ImageParmas.size = size;
|
||||
whistle2ImageParmas.lineWidth = lineWidth;
|
||||
|
||||
return whistle2ImageParmas;
|
||||
}
|
||||
|
@ -36,7 +36,7 @@ public class Whistles2Image extends FreqTransform {
|
||||
// double[] freqLimits = new double[] {params[0].doubleValue(), params[1].doubleValue()};
|
||||
// double[] size = new double[] {params[2].doubleValue(), params[3].doubleValue()};
|
||||
|
||||
SpecTransform specTransform = whistleGroupToImage( whistleGroup, params.freqLimits, params.size);
|
||||
SpecTransform specTransform = whistleGroupToImage( whistleGroup, params.freqLimits, params.size, params.lineWidth);
|
||||
|
||||
this.setSpecTransfrom(specTransform);
|
||||
this.setFreqlims(params.freqLimits);
|
||||
@ -50,7 +50,7 @@ public class Whistles2Image extends FreqTransform {
|
||||
* @param freqLimits - the frequency limits
|
||||
* @return the spectrogram transform.
|
||||
*/
|
||||
private SpecTransform whistleGroupToImage(SegmenterDetectionGroup whistleGroup, double[] freqLimits, double[] size) {
|
||||
private SpecTransform whistleGroupToImage(SegmenterDetectionGroup whistleGroup, double[] freqLimits, double[] size, double lineWidth) {
|
||||
|
||||
SpecTransform specTransform = new SpecTransform();
|
||||
|
||||
@ -65,7 +65,7 @@ public class Whistles2Image extends FreqTransform {
|
||||
ArrayList<double[][]> points = whistContours2Points(whistleGroup);
|
||||
|
||||
//does not work becaue it has to be on the AWT thread.
|
||||
BufferedImage canvas = makeScatterImage(points, size, new double[]{0, whistleGroup.getSegmentDuration()/1000.}, freqLimits, 10.);
|
||||
BufferedImage canvas = makeScatterImage(points, size, new double[]{0, whistleGroup.getSegmentDuration()/1000.}, freqLimits, lineWidth);
|
||||
|
||||
double[][] imaged = new double[(int) size[0]][(int) size[1]];
|
||||
|
||||
@ -90,9 +90,9 @@ public class Whistles2Image extends FreqTransform {
|
||||
/**
|
||||
* Convert a list of whistle contours to a list of time and frequency points.
|
||||
* @param whistleGroup - list of whistle contours within a detection group.
|
||||
* @return an array with time (milliseconds from start of group) and frequency (Hz)
|
||||
* @return an array with time (seconds from start of group) and frequency (Hz)
|
||||
*/
|
||||
private ArrayList<double[][]> whistContours2Points(SegmenterDetectionGroup whistleGroup) {
|
||||
public static ArrayList<double[][]> whistContours2Points(SegmenterDetectionGroup whistleGroup) {
|
||||
|
||||
ArrayList<double[][]> contours = new ArrayList<double[][]>();
|
||||
|
||||
@ -212,7 +212,12 @@ public class Whistles2Image extends FreqTransform {
|
||||
*/
|
||||
public double[] freqLimits;
|
||||
|
||||
public double[] size;
|
||||
public double[] size;
|
||||
|
||||
/**
|
||||
* The line width to draw in pixels
|
||||
*/
|
||||
public double lineWidth = 10;
|
||||
|
||||
}
|
||||
|
||||
|
@ -35,6 +35,9 @@ import rawDeepLearningClassifier.defaultModels.DLModel;
|
||||
*/
|
||||
public class DefaultModelPane extends PamBorderPane{
|
||||
|
||||
private static final double PREF_WIDTH = 200;
|
||||
|
||||
|
||||
/**
|
||||
* Reference to the deafult model manager that contains the default models.
|
||||
*/
|
||||
@ -74,7 +77,7 @@ public class DefaultModelPane extends PamBorderPane{
|
||||
// vBox.setPrefWidth(120);
|
||||
|
||||
hidingPaneContent= new PamBorderPane();
|
||||
hidingPaneContent.setPrefWidth(150);
|
||||
hidingPaneContent.setPrefWidth(PREF_WIDTH);
|
||||
hidingPane = new HidingPane(Side.RIGHT, hidingPaneContent, vBox, true, 0);
|
||||
|
||||
PamButton button;
|
||||
@ -101,12 +104,15 @@ public class DefaultModelPane extends PamBorderPane{
|
||||
}
|
||||
|
||||
hidingPane.setStyle("-fx-background-color: -fx-base");
|
||||
hidingPane.setPrefWidth(PREF_WIDTH);
|
||||
// this.setStyle("-fx-background-color: -fx-base");
|
||||
|
||||
PamStackPane mainHolder = new PamStackPane();
|
||||
mainHolder.getChildren().addAll(vBox, hidingPane);
|
||||
StackPane.setAlignment(hidingPane, Pos.TOP_RIGHT);
|
||||
|
||||
mainHolder.setPrefWidth(PREF_WIDTH);
|
||||
|
||||
return mainHolder;
|
||||
|
||||
}
|
||||
|
@ -50,6 +50,10 @@ public class SegmenterDetectionGroup extends GroupDetection<PamDataUnit> {
|
||||
return segMillis;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the segment duration in milliseconds.
|
||||
* @return the segment duration in millis.
|
||||
*/
|
||||
public double getSegmentDuration() {
|
||||
return segDuration;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user