mirror of
https://github.com/PAMGuard/PAMGuard.git
synced 2024-11-25 16:42:27 +00:00
Update click_train_help.md
This commit is contained in:
parent
d831398b31
commit
62e14b85d6
@ -16,7 +16,7 @@ The detection stage is currently based on a multi hypothesis tracking (MHT) algo
|
||||
<img width="930" height="900" src = "resources/mht_diagram.png">
|
||||
</p>
|
||||
|
||||
_Diagram demonstrating how the click train algorithm works. Black dots are a set of 14 detected clicks at times t1 to t14. The click train algorithm begins at click 1 and creates two possible clicks trains, one that includes the first click (filled circle) and the other in which the click is not part of the click train (non-filled circle). The algorithm then moves to the next click and adds it to the hypothesis matrix. As the number of clicks increases, the hypothesis matrix exponentially expands in size and must be pruned. After a minimum of Npmin clicks (in this case 4) each track hypothesis (possible click train) is assigned a χ^2score. The track hypothesis with lowest score (defined by larger coloured circles) has it’s branch traced back Np (in this case 3) clicks. Any track hypothesis which do not include the click Np steps back are pruned (defined by the double lines). Clicks which share no click associations with the first track hypothesis are then pruned and the process repeats until all clicks are part of a track or a maximum number of tracks have been considered (in this example there are two tracks). The algorithm then moves to the next click, adds it to the hypothesis matrix, assigns χ^2scores and traces the lowest χ^2 branch Np steps back, pruning the hypothesis matrix again; the process repeats until the last click. Note that there is always a track hypothesis with no associated clicks (i.e. the bottom-most branch where no clicks belong to a click train). If a track hypothesis is confirmed and thus removed from the hypothesis matrix, then this track can be used to start another click train_
|
||||
_Diagram demonstrating how the click train algorithm works. Black dots are a set of 14 detected clicks at times t1 to t14. The click train algorithm begins at click 1 and creates two possible clicks trains, one that includes the first click (filled circle) and the other in which the click is not part of the click train (non-filled circle). The algorithm then moves to the next click and adds it to the hypothesis matrix. As the number of clicks increases, the hypothesis matrix exponentially expands in size and must be pruned. After a minimum of Npmin clicks (in this case 4) each track hypothesis (possible click train) is assigned a χ<sup>2</sup> score. The track hypothesis with lowest score (defined by larger coloured circles) has it’s branch traced back Np (in this case 3) clicks. Any track hypothesis which do not include the click Np steps back are pruned (defined by the double lines). Clicks which share no click associations with the first track hypothesis are then pruned and the process repeats until all clicks are part of a track or a maximum number of tracks have been considered (in this example there are two tracks). The algorithm then moves to the next click, adds it to the hypothesis matrix, assigns χ<sup>2</sup> scores and traces the lowest χ<sup>2</sup> branch Np steps back, pruning the hypothesis matrix again; the process repeats until the last click. Note that there is always a track hypothesis with no associated clicks (i.e. the bottom-most branch where no clicks belong to a click train). If a track hypothesis is confirmed and thus removed from the hypothesis matrix, then this track can be used to start another click train_
|
||||
|
||||
The advantage of this MHT approach is that the click train detection module is quite general and can cope with a large variety of complex situations and multiple overlapping click trains. The disadvantage is that there are a large number of potential variables which can be set that affect the performance of the detector which can make it complex to initially set up.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user